Patents by Inventor Keith G. Fife

Keith G. Fife has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200400620
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Application
    Filed: August 5, 2020
    Publication date: December 24, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Publication number: 20200386711
    Abstract: The described embodiments may provide a chemical detection circuit. The chemical detection circuit may comprise a column of chemically-sensitive pixels. Each chemically-sensitive pixel may comprise a chemically-sensitive transistor, and a row selection device. The chemical detection circuit may further comprise a column interface circuit coupled to the column of chemically-sensitive pixels and an analog-to-digital converter (ADC) coupled to the column interface circuit. Each column interface circuit and column-level ADC may be arrayed with other identical circuits and share critical resources such as biasing and voltage references, thereby saving area and power.
    Type: Application
    Filed: April 16, 2020
    Publication date: December 10, 2020
    Inventor: Keith G. Fife
  • Patent number: 10856844
    Abstract: Vertical packaging configurations for ultrasound chips are described. Vertical packaging may involve use of integrated interconnects other than wires for wire bonding. Examples of such integrated interconnects include edge-contact vias, through silicon vias and conductive pillars. Edge-contact vias are vias defined in a trench formed in the ultrasound chip. Multiple vias may be provided for each trench, thus increasing the density of vias. Such vias enable electric access to the ultrasound transducers. Through silicon vias are formed through the silicon handle and provide access from the bottom surface of the ultrasound chip. Conductive pillars, including copper pillars, are disposed around the perimeter of an ultrasound chip and provide access to the ultrasound transducers from the top surface of the chip. Use of these types of packaging techniques can enable a substantial reduction in the dimensions of an ultrasound device.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Keith G. Fife, Jianwei Liu
  • Patent number: 10856847
    Abstract: To implement a single-chip ultrasonic imaging solution, on-chip signal processing may be employed in the receive signal path to reduce data bandwidth and a high-speed serial data module may be used to move data for all received channels off-chip as digital data stream. The digitization of received signals on-chip allows advanced digital signal processing to be performed on-chip, and thus permits the full integration of an entire ultrasonic imaging system on a single semiconductor substrate. Various novel waveform generation techniques, transducer configuration and biasing methodologies, etc., are likewise disclosed. HIFU methods may additionally or alternatively be employed as a component of the “ultrasound-on-a-chip” solution disclosed herein.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 10856840
    Abstract: A universal ultrasound device having an ultrasound includes a semiconductor die; a plurality of ultrasonic transducers integrated on the semiconductor die, the plurality of ultrasonic transducers configured to operate a first mode associated with a first frequency range and a second mode associated with a second frequency range, wherein the first frequency range is at least partially non-overlapping with the second frequency range; and control circuitry configured to: control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the first frequency range, in response to receiving an indication to operate the ultrasound probe in the first mode; and control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the second frequency range, in response to receiving an indication to operate the ultrasound probe in the second mode.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Patent number: 10850306
    Abstract: Processes for fabricating capacitive micromachined ultrasonic transducers (CMUTs) are described, as are CMUTs of various doping configurations. An insulating layer separating conductive layers of a CMUT may be formed by forming the layer on a lightly doped epitaxial semiconductor layer. Dopants may be diffused from a semiconductor substrate into the epitaxial semiconductor layer, without diffusing into the insulating layer. CMUTs with different configurations of N-type and P-type doping are also described.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 1, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Susan A. Alie, Joseph Lutsky, David Grosjean
  • Patent number: 10845308
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers directly into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 24, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David Boisvert
  • Patent number: 10843227
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: November 24, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 10816504
    Abstract: In one embodiment, a device is described. The device includes a material defining a reaction region. The device also includes a plurality of chemically-sensitive field effect transistors have a common floating gate in communication with the reaction region. The device also includes a circuit to obtain respective output signals from the chemically-sensitive field effect transistors indicating an analyte within the reaction region.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: October 27, 2020
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Keith G. Fife, James Bustillo, Jordan Owens
  • Publication number: 20200335933
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 10782269
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: September 22, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston
  • Patent number: 10775305
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit also includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: September 15, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David Boisvert
  • Publication number: 20200284754
    Abstract: A high data rate integrated circuit, such as an integrated circuit including a large sensor array, may be implemented using clock multipliers in individual power domains, coupled to sets of transmitters, including a transmitter pair configuration. Reference clock distribution circuitry on the integrated circuit distributes a relatively low speed reference clock. In a transmitter pair configuration, each pair comprises a first transmitter and a second transmitter in a transmitter power domain. Also, each pair of transmitters includes a clock multiplier connected to the reference clock distribution circuitry, and disposed between the first and second transmitters, which produces a local transmit clock.
    Type: Application
    Filed: March 3, 2020
    Publication date: September 10, 2020
    Inventors: Keith G. Fife, Jungwook Yang
  • Patent number: 10767224
    Abstract: A sensor device includes a sensor array and a flow cell in fluid communication with the sensor array. Bias circuitry apply bias arrangements to the sensor array to produce sensor data. Peripheral circuitry coupled to the bias circuitry produces streams of data from the sensor array, the peripheral circuitry having an active mode and an idle mode. Logic to switch the peripheral circuitry between the active mode and the idle mode to control power consumption is provided. A temperature sensor may be included, and the logic can operate with feedback to switch between the active mode and the idle mode to maintain the temperature within an operating range.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: September 8, 2020
    Assignee: Life Technologies Corporation
    Inventors: Keith G. Fife, Jungwook Yang
  • Publication number: 20200278298
    Abstract: A device including a transparent layer defining a surface exposed to a flow volume and to secure a target polynucleotide template and a detector structure secured to the transparent layer and including a plurality of detectors to detect a signal emitted during nucleotide incorporation along the target polynucleotide template.
    Type: Application
    Filed: March 25, 2020
    Publication date: September 3, 2020
    Inventors: William M. LAFFERTY, Jonathan M. ROTHBERG, Keith G. FIFE
  • Publication number: 20200269279
    Abstract: A method of forming an ultrasonic transducer device includes forming and patterning a film stack over a substrate, the film stack comprising a metal electrode layer and a chemical mechanical polishing (CMP) stop layer formed over the metal electrode layer; forming an insulation layer over the patterned film stack; planarizing the insulation layer to the CMP stop layer; measuring a remaining thickness of the CMP stop layer; and forming a membrane support layer over the patterned film stack, wherein the membrane support layer is formed at thickness dependent upon the measured remaining thickness of the CMP stop layer, such that a combined thickness of the CMP stop layer and the membrane support layer corresponds to a desired transducer cavity depth.
    Type: Application
    Filed: November 14, 2019
    Publication date: August 27, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Lingyun Miao, Jianwei Liu, Keith G. Fife
  • Publication number: 20200269280
    Abstract: Ultrasound devices including piezoelectric micromachined ultrasonic transducers (PMUTs) are described. Frequency tunable PMUT arrays are provided. The PMUTs may be formed on the same substrate or a different substrate than an integrated circuit substrate. The PMUTs may be formed in a variety of ways and from various suitable piezoelectric materials.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Gerard Schmid
  • Patent number: 10741990
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 11, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20200239299
    Abstract: A method of forming a multiple layer, hybrid interposer structure includes forming a plurality of first openings through a substrate, the substrate comprising a heat spreading material; forming a first metal material within the plurality of first openings and on top and bottom surfaces of the substrate; patterning the first metal material; forming a dielectric layer over the patterned first metal material; forming a plurality of second openings within the dielectric layer to expose portions of the patterned first metal material on the top and bottom surfaces of the substrate; filling the plurality of second openings with a second metal material, in contact with the exposed portions of the patterned first metal material; forming a third metal material on the top and bottom surfaces of the substrate, the third metal material in contact with the second metal material and the dielectric layer; and patterning the third metal material.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 30, 2020
    Applicant: Butterfly Network, Inc.
    Inventors: Jianwei Liu, Keith G. Fife
  • Patent number: 10711299
    Abstract: System and methods for identifying nucleotides based on data acquired from a sensor during sequencing of nucleic acids. The method may include obtaining characteristics of light detected from luminescent labels associated with the nucleotides during nucleotide incorporation events. The characteristics may include, for each nucleotide incorporation event, a temporal characteristic the light and an intensity characteristic of the light. The temporal characteristic representing a speed of decay of a probability of photon emission by a luminescent label after excitation. The method may further include grouping points representing the characteristics of the nucleotide incorporation events into groups of points. The individual points may represent at least the temporal characteristic and the intensity characteristic for a corresponding nucleotide incorporation event. The method may further include assigning the groups of points to individual nucleotides.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: July 14, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Craig Wenger, Mel Davey, Keith G. Fife, Jimmy Jia, Brian Reed, Brett J. Gyarfas