Patents by Inventor Keith G. Fife

Keith G. Fife has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10525506
    Abstract: An ultrasonic transducer includes a membrane, a bottom electrode, and a plurality of cavities disposed between the membrane and the bottom electrode, each of the plurality of cavities corresponding to an individual transducer cell. Portions of the bottom electrode corresponding to each individual transducer cell are electrically isolated from one another. Each portion of the bottom electrode corresponds to each individual transducer that cell further includes a first bottom electrode portion and a second bottom electrode portion, the first and second bottom electrode portions electrically isolated from one another.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 7, 2020
    Assignee: Butterfly Networks, Inc.
    Inventors: Susan A. Alie, Keith G. Fife, Joseph Lutsky, David Grosjean
  • Patent number: 10518292
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 31, 2019
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Publication number: 20190388935
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Publication number: 20190391010
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit includes a charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers directly into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Application
    Filed: June 20, 2019
    Publication date: December 26, 2019
    Applicant: Quantum-Si Incorporated
    Inventors: Tom Thurston, Benjamin Cipriany, Joseph D. Clark, Todd Rearick, Keith G. Fife
  • Patent number: 10512936
    Abstract: An ultrasonic transducer includes a membrane, a bottom electrode, and a plurality of cavities disposed between the membrane and the bottom electrode, each of the plurality of cavities corresponding to an individual transducer cell. Portions of the bottom electrode corresponding to each individual transducer cell are electrically isolated from one another. Each portion of the bottom electrode corresponds to each individual transducer that cell further includes a first bottom electrode portion and a second bottom electrode portion, the first and second bottom electrode portions electrically isolated from one another.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: December 24, 2019
    Assignee: Butterfly Network, Inc.
    Inventors: Susan A. Alie, Keith G. Fife, Joseph Lutsky, David Grosjean
  • Publication number: 20190383739
    Abstract: Apparatus and methods for analyzing single molecules and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 19, 2019
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Publication number: 20190374107
    Abstract: A method of luminance lifetime imaging includes receiving incident photons at an integrated photodetector from luminescent molecules. The incident photons being received through one or more optical components of a point-of-care device. The method also includes detecting arrival times of the incident photons using the integrated photodetector. A method of analyzing blood glucose includes detecting luminance lifetime characteristics of tissue using, at least in part, an integrated circuit that detects arrival times of incident photons from the tissue. The method also includes analyzing blood glucose based upon the luminance lifetime characteristics.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 12, 2019
    Applicant: Tesseract Health, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David M. Boisvert
  • Patent number: 10502684
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 10, 2019
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
  • Patent number: 10497856
    Abstract: An ultrasound-on-a-chip device has an ultrasonic transducer substrate with plurality of transducer cells, and an electrical substrate. For each transducer cell, one or more conductive bond connections are disposed between the ultrasonic transducer substrate and the electrical substrate. Examples of electrical substrates include CMOS chips, integrated circuits including analog circuits, interposers and printed circuit boards.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 3, 2019
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Jaime Scott Zahorian, Paul Francis Cristman, Keith G. Fife
  • Patent number: 10495712
    Abstract: According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 3, 2019
    Assignee: Hyperfine Research, Inc.
    Inventors: Jonathan M. Rothberg, Matthew Scot Rosen, Gregory L. Charvat, William J. Mileski, Todd Rearick, Michael Stephen Poole, Keith G. Fife
  • Patent number: 10481124
    Abstract: In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: November 19, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Keith G. Fife, Jordan Owens, Shifeng Li, James Bustillo
  • Publication number: 20190336099
    Abstract: Micromachined ultrasonic transducers having pressure ports are described. The micromachined ultrasonic transducers may comprise flexible membranes configured to vibrate over a cavity. The cavity may be sealed, in some instances by the membrane itself. A pressure port may provide access to the cavity, and thus control of the cavity pressure. In some embodiments, an ultrasound device including an array of micromachined ultrasonic transducers is provided, with pressure ports for at least some of the ultrasonic transducers. The pressure ports may be used to control pressure across the array.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: Keith G. Fife, Jianwei Liu, Jungwook Yang, Joseph Lutsky
  • Publication number: 20190336104
    Abstract: An ultrasound device is described. The ultrasound device may include a cavity, a membrane, and a sensing electrode. When an electrical signal is applied to the sensing electrode and a static bias is applied to the membrane, the membrane vibrates within the cavity and produces ultrasonic signals. The cavity, the membrane, and the sensing electrode may be considered a capacitive micromachined ultrasonic transducer (CMUT). The sensing electrode may be shaped as a ring, whereby the central portion of the sensing electrode is removed. Removal of the central portion of the sensing electrode may reduce the parasitic capacitance without substantially affecting the production of ultrasonic signals by the CMUT. This, in turn, can result in an increase in the signal-to-noise ratio (SNR) of the ultrasonic signals. The ultrasound device may further include a bond pad configured for wire bonding, and a trench electrically isolating the bond pad from the membrane.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: KEITH G. FIFE, Jianwei Liu, Joseph Lutsky, Sarp Satir, Jungwook Yang
  • Publication number: 20190336103
    Abstract: Vertical packaging configurations for ultrasound chips are described. Vertical packaging may involve use of integrated interconnects other than wires for wire bonding. Examples of such integrated interconnects include edge-contact vias, through silicon vias and conductive pillars. Edge-contact vias are vias defined in a trench formed in the ultrasound chip. Multiple vias may be provided for each trench, thus increasing the density of vias. Such vias enable electric access to the ultrasound transducers. Through silicon vias are formed through the silicon handle and provide access from the bottom surface of the ultrasound chip. Conductive pillars, including copper pillars, are disposed around the perimeter of an ultrasound chip and provide access to the ultrasound transducers from the top surface of the chip. Use of these types of packaging techniques can enable a substantial reduction in the dimensions of an ultrasound device.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Keith G. Fife, Jianwei Liu
  • Publication number: 20190336111
    Abstract: A time gain compensation (TGC) circuit for an ultrasound device includes a first amplifier having an integrating capacitor and a control circuit configured to generate a TGC control signal that controls an integration time of the integrating capacitor, thereby controlling a gain of the first amplifier. The integration time is an amount of time an input signal is coupled to the first amplifier before the input signal is isolated from the first amplifier.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: Kailiang Chen, Keith G. Fife
  • Patent number: 10458942
    Abstract: In one embodiment, a device is described. The device includes a material defining a reaction region. The device also includes a plurality of chemically-sensitive field effect transistors have a common floating gate in communication with the reaction region. The device also includes a circuit to obtain respective output signals from the chemically-sensitive field effect transistors indicating an analyte within the reaction region.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: October 29, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. Rothberg, Keith G. Fife, James Bustillo, Jordan Owens
  • Patent number: 10441174
    Abstract: A method of luminance lifetime imaging includes receiving incident photons at an integrated photodetector from luminescent molecules. The incident photons being received through one or more optical components of a point-of-care device. The method also includes detecting arrival times of the incident photons using the integrated photodetector. A method of analyzing blood glucose includes detecting luminance lifetime characteristics of tissue using, at least in part, an integrated circuit that detects arrival times of incident photons from the tissue. The method also includes analyzing blood glucose based upon the luminance lifetime characteristics.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: October 15, 2019
    Assignee: Tesseract Health, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David Boisvert
  • Publication number: 20190299251
    Abstract: Aspects of technology described herein relate to ultrasound apparatuses including capacitive micromachines ultrasonic transducers (CMUTs) that are directly electrically coupled to delta-sigma analog-to-digital converters (ADCs). The apparatus may lack an amplifier or multiplexer between each CMUT and delta-sigma ADC. The apparatus may include between 100 and 20,000 CMUTs and between 100 and 20,000 delta-sigma ADCs, each of the CMUTs directly electrically coupled to one of the delta-sigma ADCs. The CMUTs and the delta-sigma ADCs may be monolithically integrated on a single substrate. The delta-sigma ADCs may lack an integrator distinct from the CMUT. An internal capacitance of the CMUT may serve as an integrator for the delta-sigma ADC.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: Chao Chen, Kailiang Chen, Leung Kin Chiu, Youn-Jae Kook, Keith G. Fife
  • Patent number: 10422767
    Abstract: A chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extending a distance along a sidewall of the opening.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 24, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Keith G. Fife, Jordan Owens, Shifeng Li, James Bustillo
  • Publication number: 20190283081
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Application
    Filed: March 26, 2019
    Publication date: September 19, 2019
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez