Patents by Inventor Kevin S. Petrarca

Kevin S. Petrarca has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8822141
    Abstract: A method for printing a wafer ID on a wafer, the method comprises identifying a wafer ID on a back side of the wafer. Subsequently, etching a plurality of recesses, consistent in size with chip features of the wafer, into the front side of the wafer, such that the plurality of recesses depicts the wafer ID. The method further comprises filling the recesses with a metal.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Kevin S. Petrarca, Stuart A. Sieg
  • Patent number: 8815475
    Abstract: A reticle carrier for a polishing tool capable of accommodating a reticle includes a base plate with an obverse and reverse surfaces, a retaining ring secured to the obverse surface of the base plate forming a recess defined by the obverse surface of the rigid base plate and internal edges of the retaining ring. A reticle pad supports a reticle in the recess. The base plate and the reticle pad having an array of matching, aligned passageway holes therethrough for exhaustion of air from space between the base plate and a the reticle and for supply of air to that space so a vacuum can retain a the reticle in place on the reticle carrier under vacuum conditions and application of air under pressure can eject a reticle from the reticle carrier.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kevin S. Petrarca, Donald F. Canaperi, Mahadevaiyer Krishnan, Rebecca D. Mih, Steven Steen, Henry Grabarz, Michael S. Hibbs
  • Publication number: 20140232519
    Abstract: In a method for controlling pricing of a product, a radio frequency identification (RFID) tag having at least one processor is attached to a monitored product. A value indicative of a degree of exposure to an environmental condition is obtained. The obtained value is compared with a predetermined value range. A price of the monitored product is adjusted when the result of the comparison falls outside the predetermined value range.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ira L. Allen, Lawrence A. Clevenger, Kevin S. Petrarca, Carl J. Radens
  • Patent number: 8802990
    Abstract: A contiguous deep trench includes a first trench portion having a constant width between a pair of first parallel sidewalls, second and third trench portions each having a greater width than the first trench portion and laterally connected to the first trench portion. A non-conformal deposition process is employed to form a conductive layer that has a tapered geometry within the contiguous deep trench portion such that the conductive layer is not present on bottom surfaces of the contiguous deep trench. A gap fill layer is formed to plug the space in the first trench portion. The conductive layer is patterned into two conductive plates each having a tapered vertical portion within the first trench portion. After removing remaining portions of the gap fill layer, a device is formed that has a small separation distance between the tapered vertical portions of the conductive plates.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Zhengwen Li, Kevin S. Petrarca, Roger A. Quon, Carl J. Radens, Brian C. Sapp
  • Patent number: 8792080
    Abstract: A method and system to predict lithography focus error using chip topography data is disclosed. The chip topography data may be measured or simulated topography data. A plane is best fitted to the topography data, and residuals are computed. The residuals are then used to make a prediction regarding the focus error. The density ratio of metal to dielectric may also be used as a factor in determining the predicted focus error.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian Christopher Sapp, Choongyeun Cho, Lawrence A. Clevenger, Laertis Economikos, Bernhard R. Liegl, Kevin S. Petrarca, Roger Allan Quon
  • Patent number: 8772949
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal such that the metal is recessed with respect to at least one of the active side and the inactive side and does not entirely fill the TSVs; defining capture pad areas on the at least one of the active side and inactive side adjacent to the recessed TSVs; filling the capture pad areas and recessed TSVs with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs. Also disclosed is a semiconductor substrate having a capture pad.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Publication number: 20140127904
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal; defining capture pad areas on at least one of the active side and the inactive side adjacent to the TSVs, the defined capture pad areas comprising insulator islands and open areas; filling the open areas with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs.
    Type: Application
    Filed: November 10, 2013
    Publication date: May 8, 2014
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Publication number: 20140124946
    Abstract: Method of forming a capture pad on a semiconductor substrate. The method includes providing a semiconductor substrate having an active side and an inactive side and having a plurality of unfilled TSVs extending between the active side and the inactive side; filling the TSVs with a metal such that the metal is recessed with respect to at least one of the active side and the inactive side and does not entirely fill the TSVs; defining capture pad areas on the at least one of the active side and inactive side adjacent to the recessed TSVs; filling the capture pad areas and recessed TSVs with the same metal to form a capture pad in direct contact with each of the TSVs, each of the capture pads having an all metal portion that follows an outline of each of the TSVs. Also disclosed is a semiconductor substrate having a capture pad.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Griesemer, Gary Lafontant, Kevin S. Petrarca, Richard P. Volant
  • Patent number: 8691691
    Abstract: The present invention includes embodiments of a processing method, and resulting structure, for building a chip having a TSV pillar which can be used as an interconnecting structure. The process includes the deposition of a dual diffusion barrier between the TSV and the substrate the TSV is embedded within. The TSV is then exposed from the back side of the substrate so that at least a portion of the TSV protrudes from the substrate and can be used as a contact for connecting the chip to another surface. The resulting TSV is rigid, highly conductive, can be placed in a tightly pitched grid of contacts, and reduces effects of CTE mismatch.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Troy L. Graves-Abe, William F. Landers, Kevin S. Petrarca, Richard P. Volant
  • Patent number: 8692649
    Abstract: Asset management for control of electric appliances comprises a keycode unit and an equipment unit embedded in an appliance. The keycode unit is located in a protected environment and relates to an asset management area. The equipment unit may store an appliance identification code. The keycode unit and the equipment unit may be in communication contact, whereby the equipment unit sends positioning coordinates to the keycode unit, and wherein the equipment unit is adapted to lock the appliance via the lock unit, in response to a lock signal that the equipment unit receives from the keycode unit, if the appliance moves outside the asset management area.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Rainer K. Krause, Kevin S. Petrarca, Carl J. Radens, Brian C. Sapp
  • Publication number: 20140075396
    Abstract: A method and system to predict lithography focus error using chip topography data is disclosed. The chip topography data may be measured or simulated topography data. A plane is best fitted to the topography data, and residuals are computed. The residuals are then used to make a prediction regarding the focus error. The density ratio of metal to dielectric may also be used as a factor in determining the predicted focus error.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Choongyeun Cho, Lawrence A. Clevenger, Laertis Economikos, Bernhard R. Liegl, Kevin S. Petrarca, Roger Allan Quon, Brian Christopher Sapp
  • Publication number: 20140071416
    Abstract: A method and system to predict lithography focus error using chip topography data is disclosed. The chip topography data may be measured or simulated topography data. A plane is best fitted to the topography data, and residuals are computed. The residuals are then used to make a prediction regarding the focus error. The density ratio of metal to dielectric may also be used as a factor in determining the predicted focus error.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Inventors: Choongyeun Cho, Lawrence A. Clevenger, Laertis Economikos, Bernhard R. Liegl, Kevin S. Petrarca, Roger Allan Quon, Brian Christopher Sapp
  • Publication number: 20140075399
    Abstract: A method and system to predict lithography focus error using chip topography data is disclosed. The chip topography data may be measured or simulated topography data. A plane is best fitted to the topography data, and residuals are computed. The residuals are then used to make a prediction regarding the focus error. The density ratio of metal to dielectric may also be used as a factor in determining the predicted focus error.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Inventors: Choongyeun Cho, Lawrence A. Clevenger, Laertis Economikos, Bernhard R. Liegl, Kevin S. Petrarca, Roger Allan Quon, Brian Christopher Sapp
  • Patent number: 8665575
    Abstract: A photovoltaic module (10) with a plurality of solar cells (20) interconnected in serial and/or parallel arrangement within the module (10) is equipped with an overheat protection system (30) for suppressing damages of the photovoltaic module (10) due to defects of the solar cells (20). The overheat protection system (30) comprises a heat sensor (32) which is thermally coupled to a solar cell (20). The heat sensor (32) is physically integrated into an electrical switch (34, 36, 38) which is electrically connected to said solar cell (20).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Harold J. Hovel, Rainer Krause, Zhengwen Li, Kevin S. Petrarca, Gerd Pfeiffer, Kevin Prettyman, Carl J. Radens, Brian C. Sapp
  • Patent number: 8633580
    Abstract: A microelectronic assembly having a through hole extending through a first wafer (or chip) and a second wafer (or chip) are provided. The first and second wafers (or chips) have confronting faces and metallic features at the faces which are joined together to assemble the first and second wafers (or chips) leaving a gap between the confronting faces. A hole is etched in the first wafer (or chip), then material is sputtered to form a wall of material in the gap between wafers (or chips). Etching continues to extend the hole into or through the second wafer (or chip). The hole is filled to form a substantially vertical through silicon conductive via.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Richard P. Volant, Mukta G. Farooq, Kevin S. Petrarca
  • Patent number: 8614115
    Abstract: A method for manufacturing a photovoltaic solar cell device includes the following. A p-n junction having a first doping density is formed. Formation of the p-n junction is enhanced by introducing a second doping density to form high doped areas for a dual emitter application. The high doped areas are defined by a masking process integrated with the formation of the p-n junction, resulting in a mask pattern of the high doped areas. A metallization of the high doped areas occurs in accordance with the mask pattern of the high doped areas.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Harold J. Hovel, Rainer Klaus Krause, Kevin S. Petrarca, Gerd Pfeiffer, Kevin M. Prettyman, Carl Radens, Brian C. Sapp
  • Patent number: 8609537
    Abstract: A microelectronic assembly and related method of forming a through hole extending through a first chip and a second chip are provided. The first and second chip have confronting faces, metallic features join the first and second chips leaving a gap chips. A first etch creates a hole through the first chip. The hole has a first wall extending in a vertical direction, and a second wall sloping inwardly from the first wall to an inner opening to expose the gap. Material of the first or second chips exposed within the hole is sputtered to form a wall in the gap. A second etch extends the hole into the second chip. An electrically conductive through silicon via can then be formed extending through the first chip, the wall between the chips and into the second chip.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: December 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Richard P. Volant, Mukta G. Farooq, Kevin S. Petrarca
  • Patent number: 8574950
    Abstract: A method for manufacturing one or more electrically contactable grids on at least one surface of a semiconductor substrate for use in a solar cell product includes the following. A heat-sensitive masking agent layer is deposited on the surface of the substrate of the solar cell product. The masking agent layer is locally heated to form a grid mask. Selected parts of the masking agent layer defined by locally heating are removed to form openings in the grid mask. A contact metallization is applied on the grid mask.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Rainer K. Krause, Zhengwen O. Li, Kevin S. Petrarca, Roger A. Quon, Carl Radens, Brian C. Sapp
  • Patent number: 8546961
    Abstract: Disclosed are a structure including alignment marks and a method of forming alignment marks in three dimensional (3D) structures. The method includes forming apertures in a first surface of a first semiconductor substrate; joining the first surface of the first semiconductor substrate to a first surface of a second semiconductor substrate; thinning the first semiconductor on a second surface of the first semiconductor substrate to provide optical contrast between the apertures and the first semiconductor substrate; and aligning a feature on the second surface of the first semiconductor substrate using the apertures as at least one alignment mark.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Troy L. Graves-Abe, Robert Hannon, Emily R. Kinser, William F. Landers, Kevin S. Petrarca, Richard P. Volant, Kevin R. Winstel
  • Patent number: 8535970
    Abstract: The invention relates to a manufacturing process of a photovoltaic solar cell (100) comprising: providing high doped areas (20) on the rear side (18) of the photovoltaic solar cell (100), providing localized metal contacts (30) localized on said high doped areas (20), providing a passivation layer (50) covering a surface (52) between said contacts (30), wherein the contacts (30) remain substantially free of the passivation layer (50), and depositing a metal layer (32) for a back surface field.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ranier Krauser, Lawrence A. Clevenger, Kevin Prettyman, Brian Christopher Sapp, Kevin S. Petrarca, Harold John Hovel, Gerd Pfeiffer, Zhengwen Li, Carl John Radens