Patents by Inventor Kouichi Takemoto

Kouichi Takemoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100163425
    Abstract: Ultrahigh purity copper having a residual resistance ratio of 38,000 or greater and a purity of 8N or higher (excluding gas components of O, C, N, H, Sand P), and in particular ultrahigh purity copper wherein the respective elements of O, C, N, H, S and P as gas components are 1 ppm or less is provided.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20100167407
    Abstract: A nickel crucible used for melting an analytical sample in the pretreatment of the analytical sample, characterized in that the purity of the nickel crucible is 99.9999 wt % or higher. Also provided is a method of analysis, comprising melting a sample by the use of the nickel crucible for melting having a purity of 99.9999 wt % or higher, and analyzing the melt to thereby obtain an analytical result in which the respective lower limits of determination of Mn, Al, Si, Mg, Pb, Fe, Co, Ti, Cu, Cr, Zr, Mo, and W are Mn: 5 wtppm, Al: 10 wtppm, Si: 10 wtppm, Mg: 5 wtppm, Pb: 5 wtppm, Fe: 5 wtppm, Co: 5 wtppm, Ti: 20 wtppm, Cu: 20 wtppm, Cr: 10 wtppm, Zr: 5 wtppm, Mo: 2 wtppm, and W:10 wtppm. In light of the recent analytical technology demanded of fast and accurate measurement of high purity materials, high purity analysis is attained through inhibition of mixing of impurities from the crucible.
    Type: Application
    Filed: February 15, 2007
    Publication date: July 1, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Masahiro Sakaguchi, Mitsuru Yamaguchi, Tomio Takahashi, Kouichi Takemoto
  • Publication number: 20100101963
    Abstract: Proposed is a method of recovering valuable metal from scrap containing conductive oxide including the steps of using scrap containing conductive oxide and performing electrolysis while periodically inverting the polarity, and recovering the scrap as hydroxide. With the foregoing method of recovering valuable metal from scrap containing conductive oxide, oxide system scrap is conductive oxide and a substance that can be reduced to metal or suboxide with hydrogen. This method enables to efficiently recover valuable metal from sputtering target scrap containing conductive oxide or scrap such as mill ends of conductive oxide that arise during the production of such a sputtering target.
    Type: Application
    Filed: February 8, 2008
    Publication date: April 29, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20100101964
    Abstract: Proposed is a method of recovering valuable metal from scrap containing conductive oxide including the steps of using an insoluble electrode as either an anode or a cathode, using a scrap containing conductive oxide as the counter cathode or anode, performing electrolysis while periodically inverting the polarity, and recovering the scrap as hydroxide. With the foregoing method of recovering valuable metal from scrap containing conductive oxide, oxide system scrap is conductive oxide and a substance that can be reduced to metal or suboxide with hydrogen. This method enables the efficient recovery of valuable metal from sputtering target scrap containing conductive oxide or scrap such as mill ends of conductive oxide that arise during the production of such a sputtering target.
    Type: Application
    Filed: February 8, 2008
    Publication date: April 29, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 7695527
    Abstract: Provided are high purity copper sulfate wherein the content of Ag impurities is 1 wtppm or less, and having a purity of 99.99 wt % or higher, and a manufacturing method of high purity copper sulfate including the steps of dissolving crude copper sulfate crystals or copper metal, and subjecting this to active carbon treatment or solvent extraction and active carbon treatment in order to realize recrystallization. The present invention aims to provide a manufacturing method of high purity copper sulfate capable of efficiently removing impurities at a low cost by dissolving commercially available copper sulfate crystals in purified water or acid and thereafter subjecting this to the refining process, and high purity copper sulfate obtained thereby.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: April 13, 2010
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20100084279
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap in which a mixture of indium hydroxide and tin hydroxide or metastannic acid is collected by subjecting the ITO scrap to electrolysis in pH-adjusted electrolyte, and roasting this mixture as needed to collect the result as a mixture of indium oxide and tin oxide. This method enables the efficient collection of indium hydroxide and tin hydroxide or metastannic acid, or indium oxide and tin oxide from an ITO scrap of an indium-tin oxide (ITO) sputtering target or an ITO scrap such as ITO mill ends arisen during the manufacture of such ITO sputtering target.
    Type: Application
    Filed: June 27, 2007
    Publication date: April 8, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20100084281
    Abstract: Proposed is a method for collecting valuable metal from an ITO scrap by subjecting the ITO scrap to electrolysis and collecting the result as metallic indium. Specifically, the present invention proposes a method for selectively collecting metallic indium including the steps of subjecting the ITO scrap to electrolysis in an electrolytic bath partitioned with a diaphragm or an ion-exchange membrane, subsequently extracting anolyte temporarily, eliminating tin contained in the anolyte by a neutralization method, a replacement method or other methods, placing a solution from which the tin was eliminated in a cathode side again and performing electrolysis thereto; or a method for collecting valuable metal from an ITO scrap including the steps of obtaining a solution of In or Sn in an ITO electrolytic bath, eliminating the Sn in the solution, and collecting In in the collecting bath.
    Type: Application
    Filed: June 27, 2007
    Publication date: April 8, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20100072075
    Abstract: Provided is a method of recovering valuable metal from oxide system scrap including the steps of performing electrolysis using an insoluble electrode as an anode and an oxide system scrap as a cathode, and recovering the scrap of the cathode as metal or suboxide. Specifically, this method enables the efficient recovery of valuable metal from oxide system scrap of an indium-tin oxide (ITO) sputtering target or oxide system scrap such as mill ends that arise during the production of such a sputtering target.
    Type: Application
    Filed: March 7, 2008
    Publication date: March 25, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20090272466
    Abstract: Provided is ultrahigh purity copper having a hardness of 40 Hv or less, and a purity of 8N or higher (provided that this excludes the gas components of O, C, N, H, S and P). With this ultrahigh purity copper, the respective elements of O, S and P as gas components are 1 wtppm or less. Also provided is a manufacturing method of ultrahigh purity copper based on two-step electrolysis using an electrolytic solution comprised of copper nitrate solution, including the procedures of adding hydrochloric acid in an electrolytic solution comprised of copper nitrate solution; circulating the electrolytic solution; and performing two-step electrolysis while eliminating impurities with a filter upon temporarily setting the circulating electrolytic solution to a temperature of 10° C. or less. The present invention provides a copper material that is compatible with the thinning (wire drawing) of the above, and is capable of efficiently manufacturing ultrahigh purity copper having a purity of 8N (99.
    Type: Application
    Filed: April 24, 2006
    Publication date: November 5, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20090104082
    Abstract: Proposed is a zirconium crucible used for melting an analytical sample in the pretreatment of the analytical sample, wherein the purity of the zirconium crucible is 99.99 wt % or higher. in light of the recent analytical technology demanded of fast and accurate measurement of high purity materials, the present invention provides a zirconium crucible for melting an analytical sample, a method of preparing such analytical sample, and a method of analysis that enables the analysis of high purity materials by inhibiting the inclusion of impurities from the crucible regardless of difference in the analysts and their skill.
    Type: Application
    Filed: February 20, 2007
    Publication date: April 23, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Masahiro Sakaguchi, Mitsuru Yamaguchi, Tomio Takahashi, Kouichi Takemoto
  • Publication number: 20090098012
    Abstract: Provided is high purity tin or tin alloy wherein the respective contents of U and Th are 5 ppb or less, the respective contents of Pb and Bi are 1 ppm or less, and the purity is 5N or higher (provided that this excludes the gas components of O, C, N, H, S and P). This high purity tin or tin alloy is characterized in that the ? ray count of high purity tin having a cast structure is 0.001 cph/cm2 or less. Since recent semiconductor devices are densified and are of large capacity, there is considerable risk of a soft error occurring due to the influence of the ? ray from materials in the vicinity of the semiconductor chip. In particular, there are strong demands for purifying the soldering material or tin to be used in the vicinity of semiconductor devices, as well as for materials with fewer ? rays. Thus, the present invention aims to provide high purity tin or tin alloy and the manufacturing method of such high purity tin by reducing the ? dose of tin so as to be adaptable as the foregoing material.
    Type: Application
    Filed: June 14, 2006
    Publication date: April 16, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 7510635
    Abstract: Provided is a manufacturing method of high purity oxide powder including the steps of subjecting a raw material such as Zn-containing scrap to acid leaching or electrolytic extraction, thereafter performing solvent extraction and activated carbon treatment thereto in order to remove impurities, neutralizing the resultant solution freed of impurities with an alkaline solution to obtain zinc hydroxide, and firing the zinc hydroxide to obtain zinc oxide. Provided are high purity zinc oxide efficiently freed of impurities, in particular C, Cl, S and Pb impurities, at low cost and the manufacturing method thereof; a target manufactured by firing the high purity zinc oxide; and a high purity zinc oxide thin film obtained by the sputtering the target.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 31, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20090004498
    Abstract: Upon performing electrolysis with a solution containing nickel as the electrolytic solution, anolyte is adjusted to pH 2 to 5; impurities such as iron, cobalt and copper contained in the anolyte are eliminated by combining any one or two or more of the methods among adding an oxidizing agent and precipitating and eliminating the impurities as hydroxide, eliminating the impurities through preliminary electrolysis, or adding Ni foil and eliminating the impurities through displacement reaction; impurities are thereafter further eliminated with a filter; and the impurity-free solution is employed as catholyte to perform the electrolysis. The present invention relates to a simple method of performing electrolytic refining employing a solution containing nickel from nickel raw material containing a substantial amount of impurities, and provides technology on efficiently manufacturing high purity nickel having a purity of 5N (99.999 wt %) or more.
    Type: Application
    Filed: September 2, 2008
    Publication date: January 1, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 7435325
    Abstract: Upon performing electrolysis with a solution containing nickel as the electrolytic solution, anolyte is adjusted to pH 2 to 5; impurities such as iron, cobalt and copper contained in the anolyte are eliminated by combining any one or two or more of the methods among adding an oxidizing agent and precipitating and eliminating the impurities as hydroxide, eliminating the impurities through preliminary electrolysis, or adding Ni foil and eliminating the impurities through displacement reaction; impurities are thereafter further eliminated with a filter; and the impurity-free solution is employed as catholyte to perform the electrolysis. The present invention relates to a simple method of performing electrolytic refining employing a solution containing nickel from nickel raw material containing a substantial amount of impurities, and provides technology on efficiently manufacturing high purity nickel having a purity of 5N (99.999 wt %) or more.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: October 14, 2008
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20080223728
    Abstract: Ultrahigh purity copper having a residual resistance ratio of 38,000 or greater and a purity of 8N or higher (excluding gas components of O, C, N, H, S and P), and in particular ultrahigh purity copper wherein the respective elements of O, C, N, H, S and P as gas components are 1 ppm or less.
    Type: Application
    Filed: January 5, 2005
    Publication date: September 18, 2008
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20080075648
    Abstract: A high purity ZrB2 powder having a purity of 99.9 wt % or higher excluding C and gas components, and a manufacturing method of such high purity ZrB2 powder, including the steps of: subjecting a Zr sponge raw material to electron beam melting and casting to prepare an ingot having a purity of 99.9 wt % or higher; cutting the ingot into a cut powder and hydrogenating the cut powder into ZrH2; pulverizing and dehydrogenating the resultant product into a Zr powder and oxidizing the Zr powder at a high temperature in an oxygen atmosphere into a ZrO2 fine powder; and mixing the ZrO2 fine powder with B having a purity of 99.9 wt % or higher so as to reduce ZrO2 and obtain a ZrB2 powder having a purity of 99.9 wt % or higher. Purity of the ZrB2 powder for use in sintering is made to be 99.
    Type: Application
    Filed: September 5, 2005
    Publication date: March 27, 2008
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20080027174
    Abstract: A starch-based coating composition that utilizes naturally derived biodegradable starch and exhibits excellent storage stability as an one-pack lacquer, and that can form coated films with superiority in terms of finished appearance, hardness, adhesion, chemical resistance and alkali resistance. The binder used is a resin (A) obtained by bonding a vinyl polymer onto starch and/or modified starch by graft polymerization, or a resin (C) obtained by reacting the resin (A) with an isocyanate group-containing product (B) obtained by reacting a polyisocyanate compound (b1) with a polyhydric alcohol (b2).
    Type: Application
    Filed: July 12, 2007
    Publication date: January 31, 2008
    Inventors: Chikara Kawamura, Kenichi Umezawa, Kouichi Takemoto
  • Publication number: 20070098626
    Abstract: Provided is a manufacturing method of high purity oxide powder including the steps of subjecting a raw material such as Zn-containing scrap to acid leaching or electrolytic extraction, thereafter performing solvent extraction and activated carbon treatment thereto in order to remove impurities, neutralizing the resultant solution freed of impurities with an alkaline solution to obtain zinc hydroxide, and firing the zinc hydroxide to obtain zinc oxide. Provided are high purity zinc oxide efficiently freed of impurities, in particular C, Cl, S and Pb impurities, at low cost and the manufacturing method thereof; a target manufactured by firing the high purity zinc oxide; and a high purity zinc oxide thin film obtained by the sputtering the target.
    Type: Application
    Filed: September 8, 2004
    Publication date: May 3, 2007
    Applicant: Nikko Materials Co., Ltd.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Publication number: 20050232849
    Abstract: High purity copper sulfate having a purity of 99.99% or higher and in which the content of transition metals such as Fe, Cr, Ni is 3 wtppm or less; and a method for producing such high purity copper sulfate which includes the steps of dissolving copper sulfate crystals in purified water, performing evaporative concentration thereto, removing the crystals precipitated initially, performing further evaporative concentration to effect crystallization, and subjecting this to filtration to obtain high purity copper sulfate. This manufacturing method of high purity copper sulfate allows the efficient removal of impurities from commercially available copper sulfate crystals at a low cost through dissolution with purified water and thermal concentration.
    Type: Application
    Filed: August 12, 2003
    Publication date: October 20, 2005
    Applicant: Nikko Materials Co., Ltd.
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 6896788
    Abstract: A method of producing a higher purity metal comprising the step of electrolyzing a coarse metal material by a primary electrolysis to obtain a primary electrodeposited metal, the step of electrolyzing the material with the primary electrodeposited metal obtained in the primary electrolysis step used as an anode to obtain a higher purity electrolyte for secondary electrolysis, and the step of further performing secondary electrolysis by employing higher purity electrolytic solution than said electrolytic solution with said primary electrodeposited metal as an anode, whereby providing an electro-refining method that effectively uses electrodes and an electrolyte produced in a plurality of electro-refining steps, reuses the flow of an electrolyte in the system, reduces organic matter-caused oxygen content, and can effectively produce a high purity metal.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: May 24, 2005
    Assignee: Nikko Materials Company, Limited
    Inventors: Yuichiro Shindo, Syunichiro Yamaguchi, Kouichi Takemoto