Patents by Inventor Kwang Ho Kim

Kwang Ho Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11626592
    Abstract: The present invention relates to a lithium-carbon composite having cavities formed therein and a method of manufacturing the same, the method including adding and mixing an organic solvent having an aromatic ring with a lithium precursor, arranging a pair of metal wires in the organic solvent, forming a lithium-carbon composite in which a carbon body is doped with lithium through plasma discharge in a solution, and annealing the lithium-carbon composite in order to remove hydrogen from the lithium-carbon composite and form cavities in the lithium-carbon composite. Accordingly, a lithium-carbon composite can be simply synthesized using plasma discharge in a solution, and the synthesized lithium-carbon composite can be annealed to thus form cavities therein, thereby increasing the lithium charge and discharge performance of a lithium secondary battery using the lithium-carbon composite.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 11, 2023
    Inventors: Jun Kang, Kwang Ho Kim
  • Patent number: 11583833
    Abstract: Disclosed herein are a calcium salts-supported metal catalyst, a method for preparing the same, and a method for the hydrodeoxygenation reaction of oxygenates using the same. The catalyst, in which a metal catalyst is supported on a carrier of a calcium salt, for example, calcium carbonate, has the effect of increasing the efficiency of hydrodeoxygenation reaction of oxygenates.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: February 21, 2023
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeong-Myeong Ha, Adid Adep Dwiatmoko, Jae Wook Choi, Dong Jin Suh, Jungho Jae, Young Hyun Yoon, Kwang Ho Kim
  • Patent number: 11569215
    Abstract: A semiconductor structure includes at least one set of vertical field effect transistors embedded within dielectric material layers overlying a substrate. Each vertical field effect transistor includes a bottom doped semiconductor electrode, a vertical transistor channel, a cylindrical gate dielectric, and a top doped semiconductor electrode. A three-dimensional NAND memory array can be provided over the first field effect transistors, and can be electrically connected to the vertical field effect transistors via metal interconnect structures. Alternatively, a three-dimensional NAND memory array can be formed on another substrate, which can be bonded to the substrate via metal-to-metal bonding. The vertical field effect transistors can be employed as switches for bit lines, word lines, or other components of the three-dimensional NAND memory array.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 31, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Kwang-Ho Kim, Peter Rabkin
  • Publication number: 20220379286
    Abstract: Disclosed are a method for producing lactic acid from wastes containing cellulose and/or hemicellulose and a catalyst for thermochemical conversion reaction of wastes containing cellulose and/or hemicellulose. The method includes a step of adding a metal catalyst to wastes containing cellulose and/or hemicellulose and performing thermochemical conversion reaction. The method provides an effect of producing lactic acid from discarded wastes, e.g., waste paper such as waste corrugated paperboards, waste paper boxes, waste newspapers, etc.
    Type: Application
    Filed: May 11, 2022
    Publication date: December 1, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kwang Ho KIM, Chang Soo KIM, Jeong-Myeong HA, Jae Wook CHOI, Chunjae YOO
  • Patent number: 11474237
    Abstract: A method for retrieval of lost radial velocity in weather radar includes expanding a radial velocity area to non-meteorological echoes including sea clutter and chaff echo using raw radar data for use of a wind field calculation area, correcting radial velocity by replacing the radial velocity determined as noise using a median sign comparison method with a median calculated within a window to which the radial velocity belongs, distinguishing a lost radial velocity area by comparing the corrected radial velocity with radar reflectivity data, and retrieving lost radial velocity using a Velocity Azimuth Display (VAD) fit function representing radial velocity of particles observed along a radar radiation source at a certain elevation in the lost radial velocity area as a function of an azimuth angle. Accordingly, it is possible to improve the quality of calculated wind field using the improved radar radial velocity, and provide more accurate dynamic structure information of the precipitation system.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: October 18, 2022
    Assignee: KOREA METEOROLOGICAL ADMINISTRATION
    Inventors: Sung-Hwa Jung, Soyeon Park, Kwang-Ho Kim
  • Publication number: 20220316957
    Abstract: A temperature sensing device including a first temperature sensor having a first resistor and a first capacitor and generating a first voltage applied to at least one of the first resistor or the first capacitor based on a first clock signal and a second clock signal generated by delaying the first clock signal, a second temperature sensor having a second resistor and a second capacitor and generating a second voltage applied to at least one of the second resistor or the second capacitor based on the first and second clock signals, a controller generating code data based on the first voltage and the second voltage and generating a control signal based on the code data, and a delay locked loop circuit delaying the first clock signal based on the control signal to generate the second clock signal may be provided.
    Type: Application
    Filed: December 27, 2021
    Publication date: October 6, 2022
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jung Hyun PARK, Kwang Ho KIM, Joo Seong KIM, Jun Hyeok YANG
  • Patent number: 11422286
    Abstract: A precipitation nowcasting method using dynamic motion vectors includes calculating a multiscale motion vector of a radar precipitation motion vector and a numerical model precipitation motion vector by changing spatial scale of cross correlation analysis for reach of a preset time interval from precipitation data obtained through a dual polarization radar, calculating a dynamic motion vector by merging the radar precipitation motion vector and the numerical model precipitation motion vector, generating a precipitation development and dissipation map through precipitation tracking and matching using the dynamic motion vector, and outputting a precipitation forecast field for each forecast time by applying the dynamic motion vector and the precipitation development and dissipation map to Lagrangian backward extrapolation. Accordingly, it is possible to achieve realistic precipitation forecast field simulation.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: August 23, 2022
    Assignee: KOREA METEOROLOGICAL ADMINISTRATION
    Inventors: Kwang-Ho Kim, Youn Choi, Sung-Hwa Jung
  • Publication number: 20220208748
    Abstract: A semiconductor structure includes a memory die bonded to a logic die. The memory die includes an alternating stack of insulating layers and electrically conductive layers; memory openings extending through the alternating stack, memory opening fill structures located in the memory openings and comprising a respective vertical semiconductor channel and a respective memory film, a source layer contacting the vertical semiconductor channels, a backside isolation dielectric layer contacting a backside surface of the source layer, and a source power supply mesh including a planar portion of a source-side electrically conductive layer that is located on a backside of the backside isolation dielectric layer and electrically connected to the source layer by conductive material portions that extend through the backside isolation dielectric layer.
    Type: Application
    Filed: December 28, 2020
    Publication date: June 30, 2022
    Inventors: Peter RABKIN, Masaaki HIGASHITANI, Kwang-ho KIM
  • Patent number: 11342244
    Abstract: Through-substrate via structures are formed in a semiconductor substrate of a first semiconductor die. Semiconductor devices, dielectric material layers, and metal interconnect structures are formed over a front surface of the semiconductor substrate. A backside dielectric layer is formed on a backside surface. Integrated line and pad structures are formed over the backside dielectric layer on a respective through-substrate via structure. Each of the integrated line and pad structures includes a respective pad portion and respective line portion that extends from a center region of the backside surface to toward a periphery of the backside surface. A bonded assembly including the first semiconductor die and a second semiconductor die can be formed. Bonding pads can be provided in a center region of the interface between the semiconductor dies to facilitate power and signal distribution in the second semiconductor die with less electrical wiring.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 24, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Jee-Yeon Kim, Kwang-Ho Kim, Fumiaki Toyama
  • Publication number: 20220146388
    Abstract: According to the embodiments disclosed herein, in a press-fitting test for measuring physical properties of a test object by pressing an indenter against the test object and measuring the load and displacement, the measured displacement value is corrected in real time in consideration of the amount of deformation according to the load of the load cell, and thus an accurate load-displacement curve can be derived, even when the amount of deformation of the load cell is included in a measured value of a displacement sensor.
    Type: Application
    Filed: February 17, 2020
    Publication date: May 12, 2022
    Inventors: Hee Kwang CHANG, Kwang Ho KIM, Jeong Hwa HONG
  • Patent number: 11296113
    Abstract: A semiconductor structure includes at least one set of vertical field effect transistors embedded within dielectric material layers overlying a substrate. Each vertical field effect transistor includes a bottom doped semiconductor electrode, a vertical transistor channel, a cylindrical gate dielectric, and a top doped semiconductor electrode. A three-dimensional NAND memory array can be provided over the first field effect transistors, and can be electrically connected to the vertical field effect transistors via metal interconnect structures. Alternatively, a three-dimensional NAND memory array can be formed on another substrate, which can be bonded to the substrate via metal-to-metal bonding. The vertical field effect transistors can be employed as switches for bit lines, word lines, or other components of the three-dimensional NAND memory array.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: April 5, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Kwang-Ho Kim, Peter Rabkin
  • Publication number: 20220068954
    Abstract: A semiconductor structure includes at least one set of vertical field effect transistors embedded within dielectric material layers overlying a substrate. Each vertical field effect transistor includes a bottom doped semiconductor electrode, a vertical transistor channel, a cylindrical gate dielectric, and a top doped semiconductor electrode. A three-dimensional NAND memory array can be provided over the first field effect transistors, and can be electrically connected to the vertical field effect transistors via metal interconnect structures. Alternatively, a three-dimensional NAND memory array can be formed on another substrate, which can be bonded to the substrate via metal-to-metal bonding. The vertical field effect transistors can be employed as switches for bit lines, word lines, or other components of the three-dimensional NAND memory array.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Kwang-Ho KIM, Peter RABKIN
  • Publication number: 20220068903
    Abstract: A semiconductor structure includes at least one set of vertical field effect transistors embedded within dielectric material layers overlying a substrate. Each vertical field effect transistor includes a bottom doped semiconductor electrode, a vertical transistor channel, a cylindrical gate dielectric, and a top doped semiconductor electrode. A three-dimensional NAND memory array can be provided over the first field effect transistors, and can be electrically connected to the vertical field effect transistors via metal interconnect structures. Alternatively, a three-dimensional NAND memory array can be formed on another substrate, which can be bonded to the substrate via metal-to-metal bonding. The vertical field effect transistors can be employed as switches for bit lines, word lines, or other components of the three-dimensional NAND memory array.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Kwang-Ho KIM, Peter RABKIN
  • Patent number: 11231736
    Abstract: A reference voltage generating circuit includes: an operational amplifier including a first input terminal connected to a first node and a second input terminal connected to a second node; a first transistor connected between a ground terminal and the first node, wherein a first current flows in the first transistor; a second transistor connected to the ground terminal; and a first variable resistor connected between the second transistor and the second node, wherein the first variable resistor has a first resistance value for adjusting the first current, based on a change in a current characteristic of the first transistor caused by a variation in a process of forming the first transistor. The reference voltage generating circuit provides a reference voltage, based on a voltage of the first node and a voltage across the first variable resistor.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 25, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo-Seong Kim, Kwang-Ho Kim, Sang-Ho Kim
  • Publication number: 20220018991
    Abstract: A precipitation nowcasting method using dynamic motion vectors includes calculating a multiscale motion vector of a radar precipitation motion vector and a numerical model precipitation motion vector by changing spatial scale of cross correlation analysis for reach of a preset time interval from precipitation data obtained through a dual polarization radar, calculating a dynamic motion vector by merging the radar precipitation motion vector and the numerical model precipitation motion vector, generating a precipitation development and dissipation map through precipitation tracking and matching using the dynamic motion vector, and outputting a precipitation forecast field for each forecast time by applying the dynamic motion vector and the precipitation development and dissipation map to Lagrangian backward extrapolation. Accordingly, it is possible to achieve realistic precipitation forecast field simulation.
    Type: Application
    Filed: June 17, 2021
    Publication date: January 20, 2022
    Inventors: Kwang-Ho Kim, Youn Choi, Sung-Hwa Jung
  • Publication number: 20220018956
    Abstract: A method for retrieval of lost radial velocity in weather radar includes expanding a radial velocity area to non-meteorological echoes including sea clutter and chaff echo using raw radar data for use of a wind field calculation area, correcting radial velocity by replacing the radial velocity determined as noise using a median sign comparison method with a median calculated within a window to which the radial velocity belongs, distinguishing a lost radial velocity area by comparing the corrected radial velocity with radar reflectivity data, and retrieving lost radial velocity using a Velocity Azimuth Display (VAD) fit function representing radial velocity of particles observed along a radar radiation source at a certain elevation in the lost radial velocity area as a function of an azimuth angle. Accordingly, it is possible to improve the quality of calculated wind field using the improved radar radial velocity, and provide more accurate dynamic structure information of the precipitation system.
    Type: Application
    Filed: June 15, 2021
    Publication date: January 20, 2022
    Inventors: Sung-Hwa Jung, Soyeon Park, Kwang-Ho Kim
  • Publication number: 20220013518
    Abstract: A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
    Type: Application
    Filed: August 25, 2021
    Publication date: January 13, 2022
    Inventors: Kwang-Ho KIM, Masaaki HIGASHITANI, Fumiaki TOYAMA, Akio NISHIDA
  • Patent number: 11222881
    Abstract: A memory device includes a memory die containing memory elements, a support die containing peripheral devices and bonded to the memory die, and an electrically conductive path between two of the peripheral devices which extends at least partially through the memory die. The electrically conductive path is electrically isolated from the memory elements.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 11, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yanli Zhang, Kwang-Ho Kim, Johann Alsmeier
  • Patent number: 11133297
    Abstract: A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: September 28, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Kwang-Ho Kim, Masaaki Higashitani, Fumiaki Toyama, Akio Nishida
  • Publication number: 20210295192
    Abstract: A method for calculating the uncertainty of a data-based model, includes: a memory data generation step (S10); a measurement data receiving step (S20); a Euclidean distance calculation step (S30); a kernel function calculation step (S40); a weighted area-specific effective number calculation step (S50) of calculating a weighted area-specific effective number (Nn); a weighted value setting step (S60) of setting a weighted area-specific weighted value (Wn); a total effective number calculation step (S70) of calculating a total effective number (Nt) according to a weighted value; a prediction data calculation step (S80) of calculating prediction data (Xq) about measurement data (Q); a weighted standard deviation calculation step (S90) of calculating a weighted standard deviation (Sw); and an uncertainty calculation step (S100) of calculating uncertainty (U) so as to determine the reliability of prediction data by means of the calculated uncertainty (U).
    Type: Application
    Filed: November 8, 2018
    Publication date: September 23, 2021
    Applicant: M&D CO., LTD.
    Inventors: Jang bom CHAI, Kwang ho KIM, Hyun su KIM