Patents by Inventor Maitreyee Mahajani

Maitreyee Mahajani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120220116
    Abstract: A deposition process including a dry etch process, followed by a deposition process of a high-k dielectric is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is energized to form a plasma of reactive gas which reacts with an oxide on the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose a substrate surface. The substrate surface is substantially free of oxides. Deposition is then used to form a layer on the substrate surface.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 30, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Atif Noori, Maitreyee Mahajani, Patricia M. Liu, Steven Hung, Tatsuya E. Sato, Mei Chang
  • Publication number: 20120202357
    Abstract: Methods for preparing a substrate for a subsequent film formation process are described. Methods for preparing a substrate for a subsequent film formation process, without immersion in an aqueous solution, are also described. A process is described that includes disposing a substrate into a process chamber, the substrate having a thermal oxide surface with substantially no reactive surface terminations. The thermal oxide surface is exposed to a partial pressure of water above the saturated vapor pressure at a temperature of the substrate to convert the dense thermal oxide with substantially no reactive surface terminations to a surface with hydroxyl surface terminations. This can occur in the presence of a Lewis base such as ammonia.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 9, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Tatsuya E. Sato, David Thompson, Jeffrey W. Anthis, Vladimir Zubkov, Steven Verhaverbeke, Roman Gouk, Maitreyee Mahajani, Patricia M. Liu, Malcolm J. Bevan
  • Publication number: 20120192792
    Abstract: CVD and ALD methods of using a batch processing chamber to process substrates are described. A batch processing chamber includes a chamber housing, a substrate boat for containing a batch of substrates in a process region, and an excitation assembly for exciting species of a processing gas. The excitation assembly is positioned within the chamber housing and may include plasma, UV, or ion assistance.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MAITREYEE MAHAJANI, Joseph Yudovsky, Brendan McDougall
  • Publication number: 20120108079
    Abstract: Atomic layer deposition methods of forming one or more of a mixed silicon oxide/silicon nitride film or a mixed silicon oxide/silicon film are described in which the substrate is exposed sequentially to a first reactant gas comprising a silicon species and a second reactant gas comprising an oxygen species to form at least a partial layer of silicon oxide on the substrate during a first atomic layer deposition process. The substrate is then exposed sequentially to a third reactant gas comprising a silicon species and a fourth reactant gas comprising a species sufficient to form at least a partial layer of one or more of silicon nitride or silicon on the substrate during a second atomic layer deposition process. The process can be repeated multiple times to deposit one or more of a mixed silicon oxide/silicon nitride film and a mixed silicon oxide/silicon film.
    Type: Application
    Filed: July 28, 2011
    Publication date: May 3, 2012
    Applicant: Applied Materials, Inc.
    Inventor: Maitreyee Mahajani
  • Publication number: 20110287615
    Abstract: Nonvolatile memory cells and methods of forming the same are provided, the methods including forming a first conductor at a first height above a substrate; forming a first pillar-shaped semiconductor element above the first conductor, wherein the first pillar-shaped semiconductor element comprises a first heavily doped layer of a first conductivity type, a second lightly doped layer above and in contact with the first heavily doped layer, and a third heavily doped layer of a second conductivity type above and in contact with the second lightly doped layer, the second conductivity type opposite the first conductivity type; forming a first dielectric antifuse above the third heavily doped layer of the first pillar-shaped semiconductor element; and forming a second conductor above the first dielectric antifuse.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Inventors: S. Brad Herner, Maitreyee Mahajani
  • Publication number: 20110263115
    Abstract: Embodiments of the invention generally provide methods for depositing metal-containing materials and compositions thereof. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 27, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Srinivas Gandikota, Yu Lei, Xinliang Lu, Sang Ho Yu, Hoon Kim, Paul F. Ma, Mei Chang, Maitreyee Mahajani, Patricia M. Liu
  • Publication number: 20110263137
    Abstract: Embodiments of the invention provide methods for forming dielectric materials on a substrate. In one embodiment, a method includes exposing a substrate surface to a first oxidizing gas during a pretreatment process, wherein the first oxidizing gas contains a mixture of ozone and oxygen having an ozone concentration within a range from about 1 atomic percent to about 50 atomic percent and forming a hafnium-containing material on the substrate surface by exposing the substrate surface sequentially to a deposition gas and a second oxidizing gas during an atomic layer deposition (ALD) process, wherein the deposition gas contains a hafnium precursor, the second oxidizing gas contains water, and the hafnium-containing material has a thickness within a range from about 5 ? to about 300 ?. In one example, the hafnium-containing material contains hafnium oxide having the chemical formula of HfOx, whereas x is less than 2, such as about 1.8.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Inventor: MAITREYEE MAHAJANI
  • Patent number: 8043907
    Abstract: Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: October 25, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang
  • Patent number: 8004033
    Abstract: Nonvolatile memory cells and methods of forming the same are provided, the methods including forming a first conductor at a first height above a substrate; forming a first pillar-shaped semiconductor element above the first conductor, wherein the first pillar-shaped semiconductor element comprises a first heavily doped layer of a first conductivity type, a second lightly doped layer above and in contact with the first heavily doped layer, and a third heavily doped layer of a second conductivity type above and in contact with the second lightly doped layer, the second conductivity type opposite the first conductivity type; forming a first dielectric antifuse above the third heavily doped layer of the first pillar-shaped semiconductor element; and forming a second conductor above the first dielectric antifuse.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 23, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Maitreyee Mahajani
  • Patent number: 7972978
    Abstract: Embodiments of the invention provide methods for forming a hafnium material on a substrate within a processing chamber. In one embodiment, a method is provided which includes exposing the substrate within the processing chamber to a first oxidizing gas during a pretreatment process, exposing the substrate sequentially to a second oxidizing gas and a deposition gas during an atomic layer deposition (ALD) cycle, wherein the second oxidizing gas contains water and the deposition gas contains a hafnium amino compound, and repeating the ALD cycle to form a hafnium-containing layer having a thickness within a range from about 5 ? to about 300 ?. In one example, the first oxidizing gas contains an O3/O2 mixture having an ozone concentration within a range from about 5 atomic percent to about 30 atomic percent.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventor: Maitreyee Mahajani
  • Patent number: 7921803
    Abstract: The present invention generally provides method and apparatus for non-contact temperature measurement in a semiconductor processing chamber. Particularly, the present invention provides methods and apparatus for non-contact temperature measurement for temperature below 500° C. One embodiment of the present invention provides an apparatus for processing semiconductor substrates. The apparatus comprises a target component comprises a material with higher emissivity than the one or more substrates.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Brendan McDougall, Ravi Jallepally, Yi-Chiau Huang, Maitreyee Mahajani, Kevin Griffin, Andrew C. Sherman
  • Patent number: 7915164
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Patent number: 7915163
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Patent number: 7897208
    Abstract: The present invention generally comprises a silicon dioxide atomic layer deposition method. By providing pyridine as a catalyst, water may be utilized as the oxidization source while depositing at a low temperature. Prior to exposing the substrate to the water, the substrate may be exposed to a pyridine soak process. Additionally, the water may be co-flowed to the chamber with the pyridine through separate conduits to reduce interaction prior to entering the chamber. Alternatively, the pyridine may be co-flowed with a silicon precursor that does not react with pyridine.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 1, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Maitreyee Mahajani, Yi-Chiau Huang, Brendan McDougall
  • Publication number: 20110021019
    Abstract: The invention provides for polysilicon vias connecting conductive polysilicon layers formed at different heights. Polysilicon vias are advantageously used in a monolithic three dimensional memory array of charge storage transistors. Polysilicon vias according to the present invention can be used, for example, to connect the channel layer of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells formed above the first device level. Similarly, vias according to the present invention can be used to connect the wordline of a first device level of charge storage transistor memory cells to the channel layer of a second device layer of such cells.
    Type: Application
    Filed: October 4, 2010
    Publication date: January 27, 2011
    Inventors: Michael W. Konevecki, Usha Raghuram, Maitreyee Mahajani, Sucheta Nallamothu, Andrew J. Walker, Tanmay Kumar
  • Patent number: 7798096
    Abstract: A batch processing chamber includes a chamber housing, a substrate boat for containing a batch of substrates in a process region, and an excitation assembly for exciting species of a processing gas. The excitation assembly is positioned within the chamber housing and may include plasma, UV, or ion assistance.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Maitreyee Mahajani, Joseph Yudovsky, Brendan McDougall
  • Publication number: 20100227061
    Abstract: The present invention generally comprises a silicon dioxide atomic layer deposition method. By providing pyridine as a catalyst, water may be utilized as the oxidization source while depositing at a low temperature. Prior to exposing the substrate to the water, the substrate may be exposed to a pyridine soak process. Additionally, the water may be co-flowed to the chamber with the pyridine through separate conduits to reduce interaction prior to entering the chamber. Alternatively, the pyridine may be co-flowed with a silicon precursor that does not react with pyridine.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 9, 2010
    Inventors: Maitreyee Mahajani, Yi-Chiau Huang, Brendan McDougall
  • Patent number: 7776395
    Abstract: A high-k silicate atomic layer deposition method is disclosed. To produce a hafnium silicate layer, a substrate may be exposed to a pulse of a hafnium precursor, a pulse of an oxidizer, a pulse of a silicon precursor, and a pulse of another oxidizer. A catalyst may additionally be co-flowed with one or more reactants into the chamber through a separate inlet. Alternatively, the catalyst may be flowed to the chamber before the reactant is introduced in a soaking procedure. By either co-flowing the catalyst through separate inlets or by performing a catalyst soak, hafnium silicate formation may proceed at a fast rate and/or at a low temperature.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Maitreyee Mahajani
  • Patent number: 7749574
    Abstract: The present invention generally comprises a silicon dioxide atomic layer deposition method. By providing pyridine as a catalyst, water may be utilized as the oxidization source while depositing at a low temperature. Prior to exposing the substrate to the water, the substrate may be exposed to a pyridine soak process. Additionally, the water may be co-flowed to the chamber with the pyridine through separate conduits to reduce interaction prior to entering the chamber. Alternatively, the pyridine may be co-flowed with a silicon precursor that does not react with pyridine.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Maitreyee Mahajani, Yi-Chiau Huang, Brendan McDougall
  • Publication number: 20100102376
    Abstract: Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.
    Type: Application
    Filed: January 14, 2010
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang