Patents by Inventor Mantu K. Hudait

Mantu K. Hudait has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120018781
    Abstract: Modulation-doped multi-gate devices are generally described. In one example, an apparatus includes a semiconductor substrate having a surface, one or more buffer films coupled to the surface of the semiconductor substrate, a first barrier film coupled to the one or more buffer films, a multi-gate fin coupled to the first barrier film, the multi-gate fin comprising a source region, a drain region, and a channel region of a multi-gate device wherein the channel region is disposed between the source region and the drain region, a spacer film coupled to the multi-gate fin, and a doped film coupled to the spacer film.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Inventors: Mantu K. Hudait, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Jack T. Kavalieros
  • Patent number: 8093584
    Abstract: A self-aligned replacement metal gate QWFET device comprises a III-V quantum well layer formed on a substrate, a III-V barrier layer formed on the quantum well layer, a III-V etch stop layer formed on the III-V barrier layer, a III-V source extension region formed on the III-V etch stop layer and having a first sidewall, a source region formed on the III-V source extension region and having a second sidewall, a III-V drain extension region formed on the III-V etch stop layer and having a third sidewall, a drain region formed on the III-V drain extension region and having a fourth sidewall, a conformal high-k gate dielectric layer formed on the first, second, third, and fourth sidewalls and on a top surface of the etch stop layer, and a metal layer formed on the high-k gate dielectric layer.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 10, 2012
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Benjamin Chu-Kung, Mantu K. Hudait, Ravi Pillarisetty
  • Patent number: 8034675
    Abstract: A composite buffer architecture for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a dual buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations and provide electrical isolation. In an embodiment of the present invention, the material of each buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a GaSb/AlSb buffer is utilized to form an InSb-based quantum well transistor on a silicon substrate.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 11, 2011
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Dmitri Loubychev, Amy W. K. Liu, Joel M. Fastenau
  • Patent number: 8017933
    Abstract: A compositionally-graded quantum well channel for a semiconductor device is described. A semiconductor device includes a semiconductor hetero-structure disposed above a substrate and having a compositionally-graded quantum-well channel region. A gate electrode is disposed in the semiconductor hetero-structure, above the compositionally-graded quantum-well channel region. A pair of source and drain regions is disposed on either side of the gate electrode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: September 13, 2011
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Mantu K. Hudait, Marko Radosavljevic, Gilbert Dewey, Willy Rachmady, Titash Rakshit
  • Patent number: 8012816
    Abstract: A quantum well is formed for a deep well III-V semiconductor device using double pass patterning. In one example, the well is formed by forming a first photolithography pattern over terminals on a material stack, etching a well between the terminals using the first photolithography patterning, removing the first photolithography pattern, forming a second photolithography pattern over the terminals and at least a portion of the well, deepening the well between the terminals by etching using the second photolithography pattern, removing the second photolithography pattern, and finishing the terminals and the well to form a device on the material stack.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 6, 2011
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Benjamin Chu-Kung, Mantu K. Hudait, Ravi Pillarisetty
  • Publication number: 20110147713
    Abstract: Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Ravi Pillarisetty, Benjamin Chu-Kung, Mantu K. Hudait, Marko Radosavljevic, Jack T. Kavalieros, Willy Rachmady, Niloy Mukherjee, Robert S. Chau
  • Publication number: 20110121266
    Abstract: Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Inventors: Prashant Majhi, Mantu K. Hudait, Jack T. Kavalieros, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Titash Rakshit, Willman Tsai
  • Publication number: 20110045659
    Abstract: A composite buffer architecture for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a dual buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations and provide electrical isolation. In an embodiment of the present invention, the material of each buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a GaSb/AlSb buffer is utilized to form an InSb-based quantum well transistor on a silicon substrate.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Applicant: INTEL CORPORATION
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Dmitri Loubychev, Amy W. K. Liu, Joel M. Fastenau
  • Patent number: 7892902
    Abstract: A group III-V material device has multiple spacer regions above a quantum well channel region. A high-k value gate dielectric is formed on an InGaAs spacer above the quantum well channel region while there are InAlAs spacer regions under contact regions.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: February 22, 2011
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey
  • Patent number: 7879739
    Abstract: Embodiments of the invention provide a method to form a high-k dielectric layer on a group III-V substrate with substantially no oxide of the group III-V substrate between the substrate and high-k dielectric layer. Oxide may be removed from the substrate. An organometallic compound may form a capping layer on the substrate from which the oxide was removed. The high-k dielectric layer may then be formed, resulting in a thin transition layer between the substrate and high-k dielectric layer and substantially no oxide of the group III-V substrate between the substrate and high-k dielectric layer.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: February 1, 2011
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, James Blackwell, Suman Datta, Jack T. Kavalieros, Mantu K. Hudait
  • Patent number: 7863710
    Abstract: Dislocation removal from a group III-V film grown on a semiconductor substrate is generally described. In one example, an apparatus includes a semiconductor substrate, a buffer film including a group III-V semiconductor material epitaxially coupled to the semiconductor substrate wherein the buffer film includes material melted by laser pulse irradiation and recrystallized to substantially remove dislocations or defects from the buffer film, and a first semiconductor film epitaxially grown on the buffer film wherein a lattice mismatch exists between the semiconductor substrate and the first semiconductor film.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: January 4, 2011
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Peter G. Tolchinsky, Jack T. Kavalieros, Marko Radosavljevic
  • Publication number: 20100327261
    Abstract: The present disclosure provides an apparatus and method for implementing a high hole mobility p-channel Germanium (“Ge”) transistor structure on a Silicon (“Si”) substrate. One exemplary apparatus may include a buffer layer including a GaAs nucleation layer, a first GaAs buffer layer, and a second GaAs buffer layer. The exemplary apparatus may further include a bottom barrier on the second GaAs buffer layer and having a band gap greater than 1.1 eV, a Ge active channel layer on the bottom barrier and having a valence band offset relative to the bottom barrier that is greater than 0.3 eV, and an AlAs top barrier on the Ge active channel layer wherein the AlAs top barrier has a band gap greater than 1.1 eV. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Applicant: INTEL CORPORATION
    Inventors: Mantu K. Hudait, Suman Datta, Jack T. Kavalieros, Peter G. Tolchinsky
  • Patent number: 7851781
    Abstract: Various embodiments provide a buffer layer that is grown over a silicon substrate that provides desirable device isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Patent number: 7851780
    Abstract: A composite buffer architecture for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a dual buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations and provide electrical isolation. In an embodiment of the present invention, the material of each buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a GaSb/AlSb buffer is utilized to form an InSb-based quantum well transistor on a silicon substrate.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Dmitri Loubychev, Amy W. K. Liu, Joel M. Fastenau
  • Patent number: 7791063
    Abstract: The present disclosure provides an apparatus and method for implementing a high hole mobility p-channel Germanium (“Ge”) transistor structure on a Silicon (“Si”) substrate. One exemplary apparatus may include a buffer layer including a GaAs nucleation layer, a first GaAs buffer layer, and a second GaAs buffer layer. The exemplary apparatus may further include a bottom barrier on the second GaAs buffer layer and having a band gap greater than 1.1 eV, a Ge active channel layer on the bottom barrier and having a valence band offset relative to the bottom barrier that is greater than 0.3 eV, and an AlAs top barrier on the Ge active channel layer wherein the AlAs top barrier has a band gap greater than 1.1 eV. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: September 7, 2010
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Suman Datta, Jack T. Kavalieros, Peter G. Tolchinsky
  • Patent number: 7790536
    Abstract: A device grade III-V quantum well structure and method of manufacture is described. Embodiments of the present invention enable III-V InSb quantum well device layers with defect densities below 1×108cm?2 to be formed. In an embodiment of the present invention, a delta doped layer is disposed on a dopant segregation barrier in order to confine delta dopant within the delta doped layer and suppress delta dopant surface segregation.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: September 7, 2010
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Aaron A. Budrevich, Dmitri Loubychev, Jack T. Kavalieros, Suman Datta, Joel M. Fastenau, Amy W. K. Liu
  • Publication number: 20100193771
    Abstract: Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
    Type: Application
    Filed: April 8, 2010
    Publication date: August 5, 2010
    Inventors: Prashant Majhi, Mantu K. Hudait, Jack T. Kavalieros, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Titash Rakshit, Willman Tsai
  • Patent number: 7759142
    Abstract: Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: July 20, 2010
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Mantu K. Hudait, Jack T. Kavalieros, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Titash Rakshit, Willman Tsai
  • Publication number: 20100163926
    Abstract: Modulation-doped multi-gate devices are generally described. In one example, an apparatus includes a semiconductor substrate having a surface, one or more buffer films coupled to the surface of the semiconductor substrate, a first barrier film coupled to the one or more buffer films, a multi-gate fin coupled to the first barrier film, the multi-gate fin comprising a source region, a drain region, and a channel region of a multi-gate device wherein the channel region is disposed between the source region and the drain region, a spacer film coupled to the multi-gate fin, and a doped film coupled to the spacer film.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Inventors: Mantu K. Hudait, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Jack T. Kavalieros
  • Publication number: 20100163849
    Abstract: A quantum well is formed for a deep well III-V semiconductor device using double pass patterning. In one example, the well is formed by forming a first photolithography pattern over terminals on a material stack, etching a well between the terminals using the first photolithography patterning, removing the first photolithography pattern, forming a second photolithography pattern over the terminals and at least a portion of the well, deepening the well between the terminals by etching using the second photolithography pattern, removing the second photolithography pattern, and finishing the terminals and the well to form a device on the material stack.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: MARKO RADOSAVLIJEVIC, Benjamin Chu-Kung, Mantu K. Hudait, Ravi Pillarisetty