Patents by Inventor Mark L. Hlavinka

Mark L. Hlavinka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11117122
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: September 14, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11110443
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: September 7, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 11059921
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a Mw ranging from 70,000 to 200,000 g/mol, a ratio of Mz/Mw ranging from 1.8 to 20, an IB parameter ranging from 0.92 to 1.05, and an ATREF profile characterized by one large peak. These polymers have the dart impact, tear strength, and optical properties of a metallocene-catalyzed LLDPE, but with improved processability, melt strength, and bubble stability, and can be used in blown film and other end-use applications.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 13, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Chung Ching Tso, Yongwoo Inn, Deloris R. Gagan, Randy S. Muninger
  • Publication number: 20210179525
    Abstract: This disclosure provides processes for forming acrylic acid and other ?,?-unsaturated carboxylic acids and their salts, including catalytic processes, and catalyst systems for effecting the processes. For example, there is provided a catalyst system for producing an ?,?-unsaturated carboxylic acid or a salt thereof, the catalyst system comprising: (a) a transition metal precursor compound comprising a Group 8-11 transition metal and at least one first ligand; (b) optionally, at least one second ligand; and (c) an anionic polyaromatic resin with associated metal cations. The catalyst system can further comprise (d) an olefin; (e) carbon dioxide (CO2); and (f) a diluent. Methods of regenerating the anionic polyaromatic resin with associated metal cations are described.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 17, 2021
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Pasquale Iacono, Mark L. Hlavinka
  • Publication number: 20210178373
    Abstract: This disclosure provides for catalyst systems and processes for forming an ?,?-unsaturated carboxylic acid or a salt thereof. In an aspect, the catalyst system can comprise: a transition metal precursor comprising a Group 8-11 transition metal and at least one first ligand; optionally, at least one second ligand; an olefin; carbon dioxide (CO2); a diluent; and an oxoacid anion-substituted polyaromatic resin comprising a sulfonated polyaromatic resin, a phosphonated polyaromatic resin, a sulfinated polyaromatic resin, a thiosulfonated, or a thiosulfinated polyaromatic resin, and further comprising associated metal cations. Methods of regenerating the polyaromatic resin with associated metal cations are described.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 17, 2021
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Pasquale Iacono, Mark L. Hlavinka
  • Patent number: 10988430
    Abstract: Disclosed is a continuous process for producing ?,?-unsaturated carboxylic acids or salts thereof, comprising: 1) in a first stage, contacting (a) a transition metal precursor compound comprising at least one first ligand, (b) optionally, at least one second ligand, (c) an olefin, (d) carbon dioxide (CO2), and (e) a diluent to form a first composition; 2) in a second stage, contacting a polyanionic solid with the first composition to form a second composition; and 3) in a third stage, (a) contacting the second composition with a polar solvent to release a metal salt of an ?,?-unsaturated carboxylic acid and form a reacted solid. Methods of regenerating the polyanionic solid are described.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: April 27, 2021
    Inventors: Mark L. Hlavinka, Gregory G. Hendrickson, Pasquale Iacono
  • Publication number: 20210114009
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20210114008
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 10941101
    Abstract: This disclosure provides routes of synthesis of acrylic acid and other ?,?-unsaturated carboxylic acids and their salts, including catalytic methods. In an aspect, there is provided a process for producing an ?,?-unsaturated carboxylic acid or a salt thereof, the process comprising: (1) contacting in any order a group 8-11 transition metal precursor compound comprising at least one first ligand, at least one second ligand, an olefin, carbon dioxide, a diluent, and an anionic polyaromatic resin with associated metal cations to provide a reaction mixture; and (2) applying conditions to the reaction mixture suitable to produce the ?,?-unsaturated carboxylic acid or a salt thereof. Methods of regenerating the polyaromatic resin with associated metal cations are described.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: March 9, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Pasquale Iacono, Mark L. Hlavinka
  • Patent number: 10926247
    Abstract: This disclosure provides for catalyst systems and processes for forming an ?,?-unsaturated carboxylic acid or a salt thereof. In an aspect, the catalyst system can comprise: a transition metal precursor comprising a Group 8-11 transition metal and at least one first ligand; optionally, at least one second ligand; an olefin; carbon dioxide (CO2); a diluent; and an oxoacid anion-substituted polyaromatic resin comprising a sulfonated polyaromatic resin, a phosphonated polyaromatic resin, a sulfinated polyaromatic resin, a thiosulfonated, or a thiosulfinated polyaromatic resin, and further comprising associated metal cations. Methods of regenerating the polyaromatic resin with associated metal cations are described.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Pasquale Iacono, Mark L. Hlavinka
  • Patent number: 10894249
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: January 19, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 10894250
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: January 19, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 10858459
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: December 8, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Clear
  • Publication number: 20200360909
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Application
    Filed: August 6, 2020
    Publication date: November 19, 2020
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 10821428
    Abstract: A pre-catalyst composition comprising a) a silica support comprising silica wherein an amount of silica ranges from about 70 wt. % to about 95 wt. % based upon a total weight of the silica support, b) a chromium-containing compound wherein an amount of chromium ranges from about 0.1 wt. % to about 5 wt. % based upon the amount of silica, c) a titanium-containing compound wherein an amount of titanium ranges from about 0.1 wt. % to about 20 wt. % based upon the amount of silica, d) a carboxylic acid wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid ranges from about 1:1 to about 1:10, and e) a nitrogen-containing compound with a molecular formula containing at least one nitrogen atom wherein an equivalent molar ratio of titanium-containing compound to nitrogen-containing compound ranges from about 1:0.5 to about 1:10.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: November 3, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20200316576
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20200239605
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 30, 2020
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Clear
  • Patent number: 10722874
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: July 28, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Publication number: 20200164351
    Abstract: A method comprising a) contacting a solvent, a carboxylic acid, and a peroxide-containing compound to form an acidic mixture wherein a weight ratio of solvent to carboxylic acid in the acidic mixture is from about 1:1 to about 100:1; b) contacting a titanium-containing compound and the acidic mixture to form a solubilized titanium mixture wherein an equivalent molar ratio of titanium-containing compound to carboxylic acid in the solubilized titanium mixture is from about 1:1 to about 1:4 and an equivalent molar ratio of titanium-containing compound to peroxide-containing compound in the solubilized titanium mixture is from about 1:1 to about 1:20; and c) contacting a chromium-silica support comprising from about 0.1 wt. % to about 20 wt. % water and the solubilized titanium mixture to form an addition product and drying the addition product by heating to a temperature in a range of from about 50° C. to about 150° C. and maintaining the temperature in the range of from about 50° C. to about 150° C.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Max P. McDaniel, Kathy S. Clear, Jeremy M. Praetorius, Eric D. Schwerdtfeger, Mitchell D. Refvik, Mark L. Hlavinka
  • Patent number: 10662266
    Abstract: Methods for preparing supported chromium catalysts containing a chromium (III) compound and an activator-support are disclosed. These supported chromium catalysts can be used in catalyst compositions for the polymerization of olefins to produce polymers having low levels of long chain branching, and with greater sensitivity to the presence of hydrogen during polymerization.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 26, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Mark L. Hlavinka, Kathy S. Clear