Patents by Inventor Mark S. Rodder

Mark S. Rodder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200035838
    Abstract: A metal oxide semiconductor field effect transistor (MOSFET) includes a substrate having a source region, a drain region, and a channel region between the source region and the drain region, the substrate having an epitaxial III-V material that includes three elements thereon, a source electrode over the source region, a drain electrode over the drain region, and a crystalline oxide layer including an oxide formed on the epitaxial III-V material in the channel region, the epitaxial III-V material including three elements.
    Type: Application
    Filed: October 2, 2019
    Publication date: January 30, 2020
    Inventors: Wei-E Wang, Mark S. Rodder, Robert M. Wallace, Xiaoye Qin
  • Publication number: 20190385856
    Abstract: A method provides a gate structure for a plurality of components of a semiconductor device. A silicate layer is provided. In one aspect, the silicate layer is provided on a channel of a CMOS device. A high dielectric constant layer is provided on the silicate layer. The method also includes providing a work function metal layer on the high dielectric constant layer. A low temperature anneal is performed after the high dielectric constant layer is provided. A contact metal layer is provided on the work function metal layer.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Inventors: Wei-E Wang, Mark S. Rodder, Borna J. Obradovic
  • Patent number: 10475930
    Abstract: A metal oxide semiconductor field effect transistor (MOSFET) includes a substrate having a source region, a drain region, and a channel region between the source region and the drain region, the substrate having an epitaxial III-V material that includes three elements thereon, a source electrode over the source region, a drain electrode over the drain region, and a crystalline oxide layer including an oxide formed on the epitaxial III-V material in the channel region, the epitaxial III-V material including three elements.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: November 12, 2019
    Assignees: Samsung Electronics Co., Ltd.
    Inventors: Wei-E Wang, Mark S. Rodder, Robert M. Wallace, Xiaoye Qin
  • Publication number: 20190318998
    Abstract: A hardware-embedded security system is described. The system includes connective components, circuit elements and an insulator. The connective components include a variable conductivity layer that is conductive for a first stoichiometry and insulating for a second stoichiometry. A first portion of the circuit elements are connected to a first portion of the connective components and are active. A the second portion of the circuit elements are connected to a second portion of the connective components and are inactive. The insulator is adjacent to at least a portion of each of the connective components. The first stoichiometry is indistinguishable from the second stoichiometry via optical imaging and electron imaging of a portion of the insulator and the variable conductivity layer.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Inventors: Harsono S. Simka, Ganesh Hegde, Joon Goo Hong, Rwik Sengupta, Mark S. Rodder
  • Patent number: 10446400
    Abstract: A method provides a gate structure for a plurality of components of a semiconductor device. A silicate layer is provided. In one aspect, the silicate layer is provided on a channel of a CMOS device. A high dielectric constant layer is provided on the silicate layer. The method also includes providing a work function metal layer on the high dielectric constant layer. A low temperature anneal is performed after the high dielectric constant layer is provided. A contact metal layer is provided on the work function metal layer.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: October 15, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wei-E Wang, Mark S. Rodder, Borna J. Obradovic
  • Patent number: 10381271
    Abstract: A field effect transistor includes a fin having a stack of nanowire-like channel regions including at least first and a second nanowire-like channel regions, source and drain electrodes on opposite sides of the fin, a dielectric separation region including a dielectric material between the first and second nanowire-like channel regions, and a gate stack extending along a pair of sidewalls of the stack of nanowire-like channel regions. The dielectric separation region extending completely from a surface of the second nanowire-like channel region facing the first nanowire-like channel region to a surface of the first nanowire-like channel region facing the second nanowire-like channel region. The gate stack includes a gate dielectric layer and a metal layer on the gate dielectric layer. The metal layer of the gate stack does not extend between the first and second nanowire-like channel regions.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 13, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mark S. Rodder, Borna J. Obradovic
  • Patent number: 10381315
    Abstract: A hardware-embedded security system is described. The system includes connective components, circuit elements and an insulator. The connective components include a variable conductivity layer that is conductive for a first stoichiometry and insulating for a second stoichiometry. The variable conductivity layer is conductive for a first portion of the connective components connected to a first portion of the circuit elements. The variable conductivity layer is insulating for a second portion of the connective components connected to a second portion of the circuit elements. Thus, the first portion of the circuit elements are active and the second portion of the circuit elements are inactive. The insulator is adjacent to at least a portion of each of the connective components. The first stoichiometry may be indistinguishable from the second stoichiometry via optical imaging and electron imaging of a portion of the insulator and the variable conductivity layer.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: August 13, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Harsono S. Simka, Ganesh Hegde, Joon Goo Hong, Rwik Sengupta, Mark S. Rodder
  • Patent number: 10361195
    Abstract: An embodiment includes a semiconductor device, comprising: a substrate; a continuous diffusion region disposed on the substrate; a first gate structure disposed on the continuous diffusion region; a second gate structure disposed on the continuous diffusion region; an isolation gate structure disposed between the first gate structure and the second gate structure and disposed adjacent to the both the first gate structure and the second gate structure; a first diffusion region of the continuous diffusion region disposed between the first gate structure and the isolation gate structure; a second diffusion region of the continuous diffusion region disposed between the second gate structure and the isolation gate structure; a conductive layer disposed on the first and second diffusion regions; and an isolation gate contact disposed over the isolation gate structure and electrically insulated from the first diffusion region.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: July 23, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rwik Sengupta, Mark S. Rodder
  • Publication number: 20190181140
    Abstract: A CMOS system on chip including a series of partial gate-all-around field effect transistors. Each partial GAA FET includes a fin having a stack of channel regions, source and drain regions on opposite sides of the fin, a dielectric separation region including a dielectric material between first and second channel regions, a gate stack on the fin, and a pair of sidewall spacers on opposite sides of the gate stack. A portion of the dielectric separation region has a length from an outer edge of the dielectric separation region to an inner edge of a respective sidewall spacer. The length of the portion of the dielectric separation region of one of the partial GAA FETs is different than the length of the portion of the dielectric separation region of another one of the partial GAA FETs.
    Type: Application
    Filed: May 11, 2018
    Publication date: June 13, 2019
    Inventors: Mark S. Rodder, Borna J. Obradovic, Dharmendar Palle, Rwik Sengupta, Mohammad Ali Pourghaderi
  • Patent number: 10312152
    Abstract: A CMOS circuit includes a partial GAA nFET and a partial GAA pFET. The nFET and the pFET each include a fin including a stack of nanowire-like channel regions and a dielectric separation region extending completely between first and second nanowire-like channel regions of the stack. The nFET and the pFET each also include a source electrode and a drain electrode on opposite sides of the fin, and a gate stack extending along a pair of sidewalls of the stack of nanowire-like channel regions. The gate stack includes a gate dielectric layer and a metal layer on the gate dielectric layer. The metal layer does not extend between the first and second nanowire-like channel regions. The channel heights of the nanowire-like channel regions of the partial GAA nFET and the partial GAA pFET are different.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 4, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mark S. Rodder, Borna J. Obradovic, Joon Goo Hong, Seung Hun Lee, Pan Kwi Park, Seung Ryul Lee
  • Patent number: 10297673
    Abstract: Methods of forming a semiconductor device are provided. The methods may include forming a plurality of fin-shaped channels on a substrate, forming a gate structure crossing over the plurality of fin-shaped channels and forming a source/drain adjacent a side of the gate structure. The source/drain may cross over the plurality of fin-shaped channels and may be electrically connected to the plurality of fin-shaped channels. The methods may also include forming a metallic layer on an upper surface of the source/drain and forming a conductive contact on the metallic layer opposite the source/drain. The conductive contact may have a first length in a longitudinal direction of the metallic layer that is less than a second length of the metallic layer in the longitudinal direction of the metallic layer.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: May 21, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jorge A. Kittl, Ganesh Hegde, Rwik Sengupta, Borna J. Obradovic, Mark S. Rodder
  • Publication number: 20190148508
    Abstract: A field effect transistor (FET) for an nFET and/or a pFET device including a substrate and a fin including at least one channel region decoupled from the substrate. The FET also includes a source electrode and a drain electrode on opposite sides of the fin, and a gate stack extending along a pair of sidewalls of the channel region of the fin. The gate stack includes a gate dielectric layer and a metal layer on the gate dielectric layer. The FET also includes an oxide separation region separating the channel region of the fin from the substrate. The oxide separation region includes a dielectric material that includes a portion of the gate dielectric layer of the gate stack. The oxide separation region extends completely from a surface of the channel region facing the substrate to a surface of the substrate facing the channel region.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Mark S. Rodder, Borna J. Obradovic
  • Publication number: 20190148312
    Abstract: A hardware-embedded security system is described. The system includes connective components, circuit elements and an insulator. The connective components include a variable conductivity layer that is conductive for a first stoichiometry and insulating for a second stoichiometry. The variable conductivity layer is conductive for a first portion of the connective components connected to a first portion of the circuit elements. The variable conductivity layer is insulating for a second portion of the connective components connected to a second portion of the circuit elements. Thus, the first portion of the circuit elements are active and the second portion of the circuit elements are inactive. The insulator is adjacent to at least a portion of each of the connective components. The first stoichiometry may be indistinguishable from the second stoichiometry via optical imaging and electron imaging of a portion of the insulator and the variable conductivity layer.
    Type: Application
    Filed: March 21, 2018
    Publication date: May 16, 2019
    Inventors: Harsono S. Simka, Ganesh Hegde, Joon Goo Hong, Rwik Sengupta, Mark S. Rodder
  • Patent number: 10283638
    Abstract: A stack for a semiconductor device and a method for making the stack are disclosed. The stack comprises a plurality of sacrificial layers in which each sacrificial layer comprises a first lattice parameter; and at least one channel layer comprising a second lattice parameter that is different from the first lattice parameter and in which each channel layer is disposed between and in contact with two sacrificial layers. The stack is formed on an underlayer in which a sacrificial layer is in contact with the underlayer. The underlayer comprises a third lattice parameter that substantially matches the lattice parameter that the plurality of sacrificial layers and the at least one channel layer would have if the plurality of sacrificial layers and the at least one channel layer were was allow to relax coherently.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 7, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jorge A. Kittl, Ganesh Hegde, Robert C. Bowen, Mark S. Rodder
  • Publication number: 20190131182
    Abstract: A method for providing a semiconductor device and the device so formed are described. A doped semiconductor layer is deposited on a semiconductor underlayer. At least a portion of the semiconductor underlayer is exposed. A dopant for the doped semiconductor layer is selected from a p-type dopant and an n-type dopant. An ultraviolet-assisted low temperature (UVLT) anneal of the doped semiconductor layer is performed in an ambient. The ambient is selected from an oxidizing ambient and a nitriding ambient. The oxidizing ambient is used for the n-type dopant. The nitriding ambient is used for the p-type dopant. A sacrificial layer is formed by the doped semiconductor layer during the UVLT anneal. The dopant is driven into the portion of the semiconductor underlayer from the doped semiconductor layer by the UVLT anneal, thereby forming a doped semiconductor underlayer. The sacrificial layer is then removed.
    Type: Application
    Filed: January 23, 2018
    Publication date: May 2, 2019
    Inventors: Wei-E Wang, Mark S. Rodder, Borna J. Obradovic, Joon Goo Hong
  • Publication number: 20190131977
    Abstract: A hardware cell and method for performing a digital XNOR of an input signal and weights are described. The hardware cell includes input lines, a plurality of pairs of magnetic junctions, output transistors and at least one selection transistor coupled with the output transistors. The input lines receive the input signal and its complement. The magnetic junctions store the weight. Each magnetic junction includes a reference layer, a free layer and a nonmagnetic spacer layer between the reference layer and the free layer. The free layer has stable magnetic states and is programmable using spin-transfer torque and/or spin-orbit interaction torque. The first magnetic junction of a pair receives the input signal. The second magnetic junction of the pair receives the input signal complement. The output transistors are coupled with the magnetic junctions such that each pair of magnetic junctions forms a voltage divider. The output transistors form a sense amplifier.
    Type: Application
    Filed: February 1, 2018
    Publication date: May 2, 2019
    Inventors: Borna J. Obradovic, Titash Rakshit, Ryan M. Hatcher, Jorge A. Kittl, Mark S. Rodder
  • Publication number: 20190122891
    Abstract: A method provides a gate structure for a plurality of components of a semiconductor device. A silicate layer is provided. In one aspect, the silicate layer is provided on a channel of a CMOS device. A high dielectric constant layer is provided on the silicate layer. The method also includes providing a work function metal layer on the high dielectric constant layer. A low temperature anneal is performed after the high dielectric constant layer is provided. A contact metal layer is provided on the work function metal layer.
    Type: Application
    Filed: February 16, 2018
    Publication date: April 25, 2019
    Inventors: Wei-E Wang, Mark S. Rodder, Borna J. Obradovic
  • Patent number: 10205025
    Abstract: Methods to achieve strained channel finFET devices and resulting finFET devices are presented. In an embodiment, a method for processing a field effect transistor (FET) device may include forming a fin structure comprising a fin channel on a substrate. The method may also include forming a sacrificial epitaxial layer on a side of the fin structure. Additionally, the method may include forming a deep recess in a region that includes at least a portion of the fin structure, wherein the fin structure and sacrificial layer relax to form a strain on the fin channel. The method may also include depositing source/drain (SD) material in the deep recess to preserve the strain on the fin channel.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: February 12, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jorge A. Kittl, Joon Goo Hong, Dharmendar Reddy Palle, Mark S. Rodder
  • Patent number: 10199474
    Abstract: A field effect transistor (FET) for an nFET and/or a pFET device including a substrate and a fin including at least one channel region decoupled from the substrate. The FET also includes a source electrode and a drain electrode on opposite sides of the fin, and a gate stack extending along a pair of sidewalls of the channel region of the fin. The gate stack includes a gate dielectric layer and a metal layer on the gate dielectric layer. The FET also includes an oxide separation region separating the channel region of the fin from the substrate. The oxide separation region includes a dielectric material that includes a portion of the gate dielectric layer of the gate stack. The oxide separation region extends completely from a surface of the channel region facing the substrate to a surface of the substrate facing the channel region.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: February 5, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mark S. Rodder, Borna J. Obradovic
  • Publication number: 20190012593
    Abstract: A neuromorphic multi-bit digital weight cell configured to store a series of potential weights for a neuron in an artificial neural network. The neuromorphic multi-bit digital weight cell includes a parallel cell including a series of passive resistors in parallel and a series of gating transistors. Each gating transistor of the series of gating transistors is in series with one passive resistor of the series of passive resistors. The neuromorphic cell also includes a series of programming input lines connected to the series of gating transistors, an input terminal connected to the parallel cell, and an output terminal connected to the parallel cell.
    Type: Application
    Filed: November 7, 2017
    Publication date: January 10, 2019
    Inventors: Borna J. Obradovic, Titash Rakshit, Rwik Sengupta, Joon Goo Hong, Ryan M. Hatcher, Jorge A. Kittl, Mark S. Rodder