Patents by Inventor Martin Brox

Martin Brox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11086733
    Abstract: Methods, systems, and devices for reporting control information errors are described. A state of a memory array may be monitored during operation. After detecting an error (e.g., in received control information), the memory device may enter a first state (e.g., a locked state) and may indicate to a host device that an error was detected, the state of the memory array before the error was detected , and/or at least a portion of a control signal carrying the received control information. The host device may diagnose a cause of the error based on receiving the indication of the error and/or the copy of the control signal. After identifying and/or resolving the cause of the error, the host device may transmit one or more commands (e.g., unlocking the memory device and returning the memory array to the original state) based on receiving the original state from the memory device.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Michael Dieter Richter, Thomas Hein, Wolfgang Anton Spirkl, Martin Brox, Peter Mayer
  • Publication number: 20210234732
    Abstract: Methods, systems, and devices for postamble for multi-level signal modulation are described. One or more channels of a bus may be driven with a multi-level signal having at least two (2) distinct signal levels. After driving the bus with the multi-level signal, at least one (1) of the channels may be terminated. In some examples, the channel may be terminated to a relatively high signal level. Before termination, the channel may be driven with a postamble having an intermediate signal level. Driving the channel to an intermediate signal level before terminating the channel (e.g., to a high signal level) may avoid maximum transitions of the signal. For example, transitions between a lowest potential signal level and the high signal level (e.g., the termination level) may be avoided.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 29, 2021
    Inventors: Stefan Dietrich, Natalija Jovanovic, Ronny Schneider, Martin Brox, Thomas Hein, Michael Dieter Richter
  • Publication number: 20210224149
    Abstract: Methods, systems, and devices for bit and signal level mapping are described to enable a memory device to transmit or receive a multi-symbol signal that includes more than two (2) physical levels. Some cyclic redundancy check (CRC) calculations may generate one or more bits of CRC output per symbol of an associated signal and the output may be transmitted via a multi-symbol signal by converting one or more CRC output bit to a physical level of the signal. The conversion, or mapping, process may be performed such that the physical levels of the signal avoid a transition between a highest physical level and lowest physical level. For example, a modulation scheme or mapping process may be configured to map different values of CRC output bits to different physical levels, where the different physical levels are separated by one other physical level associated with the signal or the modulation scheme.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 22, 2021
    Inventors: Stefan Dietrich, Martin Brox, Michael Dieter Richter, Thomas Hein, Ronny Schneider, Natalija Jovanovic
  • Publication number: 20210226722
    Abstract: Methods, systems, and devices for data inversion techniques are described to enable a memory device to transmit or receive a multi-symbol signal that includes more than two (2) physical levels. Some portions of some multi-symbol signals may be inverted. A transmitting device may determine to invert one or more data symbols based on one or more parameters. A receiving device may determine that one or more data symbols are inverted and may re-invert the one or more data symbols (e.g., to an original value). When receiving or transmitting a multi-symbol signal, a device may invert or re-invert a data symbol by changing a value of one bit of the data symbol. Additionally or alternatively, a device may invert or re-invert a data symbol of a multi-symbol signal by inverting a physical level of the signal across an axis located between or associated with one or more physical levels.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 22, 2021
    Inventors: Stefan Dietrich, Thomas Hein, Natalija Jovanovic, Ronny Schneider, Michael Dieter Richter, Martin Brox
  • Patent number: 11069397
    Abstract: Methods, systems, and devices for phase clock correction are described. The clock correction may, in some examples, include two stages of duty cycle adjustment. In a first stage, the duty cycles of multiple clock signals may be adjusted. These clock signals may be based on an input clock signal and its complement. The duty cycle adjustment provided to a clock signal during this stage may be based on a difference between the duty cycle of the clock signal before adjustment and the duty cycle of another clock signal. In the second stage, the duty cycle of the input clock signal and its complement may be adjusted. The duty cycle adjustment provided to the input clock signal and/or its complement may be based on clock signals generated from the multiple clock signals after their duty cycles have been adjusted.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: July 20, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Martin Brox, Maksim Kuzmenka
  • Publication number: 20210217458
    Abstract: Methods, systems, and devices for techniques for low power operation are described. A device may be configurable to operate in a first mode and a second mode, where the first mode may include transmitting using a first modulation scheme having two logic levels and the second mode may include transmitting using a second modulation scheme having three or more (e.g., four) logic levels. The device may identify a data symbol for transmission and select, from the first mode and the second mode, the first modulation scheme for the transmission. In some example, the device may determine which of the two modes to select based on a value stored at a mode register. Here, the value stored by the mode register may indicate to utilize the first modulation scheme associated with the first mode. Thus, the device may transmit the data symbol by a signal modulated by the first modulation scheme.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 15, 2021
    Inventors: Martin Brox, Thomas Hein, Stefan Dietrich, Natalija Jovanovic, Ronny Schneider, Michael Dieter Richter
  • Patent number: 11043255
    Abstract: The present invention relates to a method of performing a write access phase for a memory device and comprising: transferring a write data from a local input and output line to a bit line to write the data into a memory cell via the bit line by activating a column switch provided between the bit line and the local input and output line during a first period; and transferring a read data read out from the memory cell to the local input and output line via the bit line by activating the column switch during asecond period; wherein the first period is longer than the second period.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: June 22, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Martin Brox, Milena Ivanov
  • Patent number: 11036410
    Abstract: A method includes varying a number of clock characteristics of each a plurality of memory devices of a memory concurrently, determining a fitness of the memory for each variation of the number of clock characteristics, selecting a particular variation of the number of clock characteristics based on the determined fitness of the memory for the particular variation, changing a setting in each of the plurality of memory devices corresponding to the particular variation to generate an additional variation of the number of clock characteristics, and determining a fitness of the memory for the additional variation.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Peter Mayer, Martin Brox, Wolfgang Anton Spirkl, Marcos Alvarez Gonzalez, Casto Salobrena Garcia, Andreas Schneider
  • Patent number: 10998014
    Abstract: A memory device configured to support multiple memory densities is provided. The memory device includes a first plurality of electrical contacts corresponding to a first command/address channel, a second plurality of electrical contacts corresponding to a second command/address channel, a third plurality of electrical contacts corresponding to a first data bus, a fourth plurality of electrical contacts corresponding to a second data bus, and mode selection circuitry configured to place the memory device in the first mode or the second mode. In the first mode, the first plurality of memory cells is operatively coupled to the first and third pluralities of electrical contacts and the second plurality of memory cells is operatively coupled to the second and fourth plurality of electrical contacts. In the second mode, the first and second pluralities of memory cells are both operatively coupled to the first and third pluralities of electrical contacts.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: May 4, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Martin Brox
  • Patent number: 10998011
    Abstract: Methods, systems, and devices for drive strength calibration for multi-level signaling are described. A driver may be configured to have an initial drive strength and to drive an output pin of a transmitting device toward an intermediate voltage level of a multi-level modulation scheme, where the output pin is coupled with a receiving device via a channel. The receiving device may generate, and the transmitting device may receive, a feedback signal indicating a relationship between the resulting voltage of the channel and an value for the intermediate voltage level. The transmitting device may determine and configure the driver to use an adjusted drive strength for the intermediate voltage level based on the feedback signal. The driver may be calibrated (e.g., independently) for each intermediate voltage level of the multi-level modulation scheme. Further, the driver may be calibrated for the associated channel.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: May 4, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Peter Mayer, Wolfgang Anton Spirkl, Michael Dieter Richter, Martin Brox, Thomas Hein
  • Patent number: 10997095
    Abstract: Systems, apparatuses, and methods for training procedures on reference voltages and sampling times associated with symbols communicated with a memory device are described. The training procedures may be configured to compensate for variations that may occur in different symbols of a signal. For example, an individual training operation may be performed for each reference voltage within a first unit interval. These individual training operations may allow a reference voltage of the first unit interval to be positionable independent of other reference voltages in the same unit interval or in different unit intervals. In another example, an individual training operation may be performed for the sampling time associated with a reference voltage. These individual training operations may allow a sampling time associated with a reference voltage in the first unit interval to be positionable independent of other sampling times in the same unit interval or in different unit intervals.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: May 4, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Peter Mayer, Thomas Hein, Martin Brox, Wolfgang Anton Spirkl, Michael Dieter Richter
  • Publication number: 20210089230
    Abstract: Methods, systems, and devices for controlled and mode-dependent heating of a memory device are described. In various examples, a memory device or an apparatus that includes a memory device may have circuitry configured to heat the memory device. The circuitry configured to heat the memory device may be activated, deactivated, or otherwise operated based on an indication of a temperature (e.g., of the memory device). In some examples, activating or otherwise operating the circuitry configured to heat the memory device may be based on an operating mode (e.g., of the memory device), which may be associated with certain access operations or operational states (e.g., of the memory device). Various operations or operating modes (e.g., of the memory device) may also be based on indications of a temperature (e.g., of the memory device).
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Peter Mayer, Michael Dieter Richter, Martin Brox, Wolfgang Anton Spirkl, Thomas Hein
  • Publication number: 20210083720
    Abstract: Methods, systems, and devices for pre-distortion of multi-level signaling are described. A device may identify two multi-level signals that are to be transmitted over two transmission lines at the same time. The device may estimate the crosstalk expected to be caused by one of the multi-level signals on the other during propagation. Based on the expected crosstalk, the device may generate a signal that compensates for the expected crosstalk. In some examples, the signal may be a combination of the first signal and a cancelation signal. In some examples, once the compensated signal has been generated, it is transmitted over its respective transmission line at the same time that the other multi-level is transmitted over its respective transmission line.
    Type: Application
    Filed: October 23, 2020
    Publication date: March 18, 2021
    Inventors: Wolfgang Anton Spirkl, Michael Dieter Richter, Martin Brox, Peter Mayer, Thomas Hein
  • Publication number: 20210075428
    Abstract: A phase-locked loop (PLL) circuit is configured to adjust a value of a bias voltage based on a comparison between a reference clock signal and a feedback clock signal, and an oscillator circuit is configured to provide the feedback clock signal and phase-shifted clock signals based on a value of the bias voltage. A frequency detector of the frequency detector is configured to cause an adjustment to the value of the bias voltage in response to detection of a frequency deviation between the reference clock signal and the feedback clock signal, To avoid a metastable state, the frequency detector is configured to apply an asynchronous delay to one of the reference clock signal or the feedback clock signal prior to detection of the frequency deviation.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Yasuhiro Takai, Maksim Kuzmenka, Mani Balakrishnan, Martin Brox
  • Publication number: 20210058090
    Abstract: Disclosed herein is an apparatus that includes a phase frequency detector configured to compare a phase difference between first and second clock signals to generate a phase detection signal, and a slew rate controller configured to lower a slew rate of the first clock signal when a selection signal is in a first state.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yasuhiro Takai, Martin Brox, Mani Balakrishnan, Maksim Kuzmenka
  • Patent number: 10931287
    Abstract: Disclosed herein is an apparatus that includes a phase frequency detector configured to compare a phase difference between first and second clock signals to generate a phase detection signal, and a slew rate controller configured to lower a slew rate of the first clock signal when a selection signal is in a first state.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: February 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Yasuhiro Takai, Martin Brox, Mani Balakrishnan, Maksim Kuzmenka
  • Patent number: 10860417
    Abstract: Methods, systems, and devices for multiple memory die techniques are described. A memory device may include multiple memory dies and may be configured to communicate with a host device. For example, each memory die may be coupled with a set of data pins that includes respective subsets of data pins (e.g., a set of eight data pins having two subsets of four data pins). Further, each memory die may have one or more auxiliary pins used for channel coding information for data communicated over one or more of the subsets of data pins. In some cases, each memory die may include one or more additional auxiliary pins, which may be used for channel coding information for a respective subset of data pins or multiple subsets of data pins. The channel coding information associated with the auxiliary pin(s) may include error detection code information, data coding information, or any combination thereof.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: December 8, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Wolfgang Anton Spirkl, Thomas Hein, Peter Mayer, Michael Dieter Richter, Martin Brox
  • Patent number: 10840918
    Abstract: A phase-locked loop (PLL) circuit is configured to adjust a value of a bias voltage based on a comparison between a reference clock signal and a feedback clock signal, and an oscillator circuit is configured to provide the feedback clock signal and phase-shifted clock signals based on a value of the bias voltage. A frequency detector of the frequency detector is configured to cause an adjustment to the value of the bias voltage in response to detection of a frequency deviation between the reference clock signal and the feedback clock signal. To avoid a metastable state, the frequency detector is configured to apply an asynchronous delay to one of the reference clock signal or the feedback clock signal prior to detection of the frequency deviation.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 17, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yasuhiro Takai, Maksim Kuzmenka, Mani Balakrishnan, Martin Brox
  • Patent number: 10840971
    Abstract: Methods, systems, and devices for pre-distortion of multi-level signaling are described. A device may identify two multi-level signals that are to be transmitted over two transmission lines at the same time. The device may estimate the crosstalk expected to be caused by one of the multi-level signals on the other during propagation. Based on the expected crosstalk, the device may generate a signal that compensates for the expected crosstalk. In some examples, the signal may be a combination of the first signal and a cancelation signal. In some examples, once the compensated signal has been generated, it is transmitted over its respective transmission line at the same time that the other multi-level is transmitted over its respective transmission line.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: November 17, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Wolfgang Anton Spirkl, Michael Dieter Richter, Martin Brox, Peter Mayer, Thomas Hein
  • Publication number: 20200333871
    Abstract: Methods, systems, and devices for multi-voltage operation for driving a multi-mode channel are described. A transmitting device and a receiving device may be coupled via a channel, and the channel may support multiple modes such as a terminated mode and an unterminated mode. A driver may be coupled with the channel, and a voltage supply for the driver may be adjusted based on the mode of the channel, such as based on whether the channel is terminated or unterminated. Adjusting the voltage supply may result in similar or otherwise desirable voltage levels on the channel for each mode of the channel.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 22, 2020
    Inventors: Martin Brox, Thomas Hein