Patents by Inventor Masayuki Miyazaki

Masayuki Miyazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160284796
    Abstract: A p+ collector layer is provided in a rear surface of a semiconductor substrate which will be an n? drift layer and an n+ field stop layer is provided in a region which is deeper than the p+ collector layer formed on the rear surface side. A front surface element structure is formed on the front surface of the semiconductor substrate and then protons are radiated to the rear surface of the semiconductor substrate at an acceleration voltage corresponding to the depth at which the n+ field stop layer is formed. A first annealing process is performed at an annealing temperature corresponding to the proton irradiation to change the protons into donors, thereby forming a field stop layer. Then, annealing is performed using annealing conditions suitable for the conditions of a plurality of proton irradiation processes to recover each crystal defect formed by each proton irradiation process.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki MIYAZAKI, Takashi YOSHIMURA, Hiroshi TAKISHITA, Hidenao KURIBAYASHI
  • Publication number: 20160268366
    Abstract: Proton irradiation is performed a plurality of times from rear surface of an n-type semiconductor substrate, which is an n? drift layer, forming an n-type FS layer having lower resistance than the n-type semiconductor substrate in the rear surface of the n? drift layer. When the proton irradiation is performed a plurality of times, the next proton irradiation is performed to as to compensate for a reduction in mobility due to disorder which remains after the previous proton irradiation. In this case, the second or subsequent proton irradiation is performed at the position of the disorder which is formed by the previous proton irradiation. In this way, even after proton irradiation and a heat treatment, the disorder is reduced and it is possible to prevent deterioration of characteristics, such as increase in leakage current. It is possible to form an n-type FS layer including a high-concentration hydrogen-related donor layer.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 15, 2016
    Inventors: Hiroshi TAKISHITA, Takashi YOSHIMURA, Masayuki MIYAZAKI, Hidenao KURIBAYASHI
  • Patent number: 9385211
    Abstract: A p+ collector layer is provided in a rear surface of a semiconductor substrate which will be an n? drift layer and an n+ field stop layer is provided in a region which is deeper than the p+ collector layer formed on the rear surface side. A front surface element structure is formed on the front surface of the semiconductor substrate and then protons are radiated to the rear surface of the semiconductor substrate at an acceleration voltage corresponding to the depth at which the n+ field stop layer is formed. A first annealing process is performed at an annealing temperature corresponding to the proton irradiation to change the protons into donors, thereby forming a field stop layer. Then, annealing is performed using annealing conditions suitable for the conditions of a plurality of proton irradiation processes to recover each crystal defect formed by each proton irradiation process.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: July 5, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki Miyazaki, Takashi Yoshimura, Hiroshi Takishita, Hidenao Kuribayashi
  • Patent number: 9368577
    Abstract: Proton irradiation is performed a plurality of times from rear surface of an n-type semiconductor substrate, which is an n? drift layer, forming an n-type FS layer having lower resistance than the n-type semiconductor substrate in the rear surface of the n? drift layer. When the proton irradiation is performed a plurality of times, the next proton irradiation is performed to as to compensate for a reduction in mobility due to disorder which remains after the previous proton irradiation. In this case, the second or subsequent proton irradiation is performed at the position of the disorder which is formed by the previous proton irradiation. In this way, even after proton irradiation and a heat treatment, the disorder is reduced and it is possible to prevent deterioration of characteristics, such as increase in leakage current. It is possible to form an n-type FS layer including a high-concentration hydrogen-related donor layer.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: June 14, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroshi Takishita, Takashi Yoshimura, Masayuki Miyazaki, Hidenao Kuribayashi
  • Publication number: 20160163786
    Abstract: Hydrogen atoms and crystal defects are introduced into an n? semiconductor substrate by proton implantation. The crystal defects are generated in the n? semiconductor substrate by electron beam irradiation before or after the proton implantation. Then, a heat treatment for generating donors is performed. The amount of crystal defects is appropriately controlled during the heat treatment for generating donors to increase a donor generation rate. In addition, when the heat treatment for generating donors ends, the crystal defects formed by the electron beam irradiation and the proton implantation are recovered and controlled to an appropriate amount of crystal defects. Therefore, for example, it is possible to improve a breakdown voltage and reduce a leakage current.
    Type: Application
    Filed: January 28, 2016
    Publication date: June 9, 2016
    Inventors: Takashi YOSHIMURA, Masayuki MIYAZAKI, Hiroshi TAKISHITA, Hidenao KURIBAYASHI
  • Patent number: 9325368
    Abstract: A period is defined to execute the sequences (processes) of communication data acquisition, measuring communication quality, communication quality data acquisition, and channel change. Processing is controlled to execute each process within a time limit set for each process and execute all processes in one cycle. This avoids that a delayed sequence influences and delays other sequences and can suppress delays. If processing fails to finish a sequence, it will resume the same sequence in the next cycle. For communication stations sharing timeslots, there are provided offset periods differing in length before the start of carrier sense in the timeslots for these stations. Consequently, even under a condition in which packet collision may occur, the collision of packets can be avoided by detecting a packet sent to another station by carrier sense. Moreover, by controlling sending priority of packets in the send queue of the gateway, sending delay can be avoided.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 26, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Yasutaka Serizawa, Takashi Yano, Masayuki Miyazaki, Kenichi Mizugaki
  • Patent number: 9276071
    Abstract: Hydrogen atoms and crystal defects are introduced into an n? semiconductor substrate by proton implantation. The crystal defects are generated in the n? semiconductor substrate by electron beam irradiation before or after the proton implantation. Then, a heat treatment for generating donors is performed. The amount of crystal defects is appropriately controlled during the heat treatment for generating donors to increase a donor generation rate. In addition, when the heat treatment for generating donors ends, the crystal defects formed by the electron beam irradiation and the proton implantation are recovered and controlled to an appropriate amount of crystal defects. Therefore, for example, it is possible to improve a breakdown voltage and reduce a leakage current.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: March 1, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi Yoshimura, Masayuki Miyazaki, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20160056510
    Abstract: An assembled battery system includes: a control unit having a cell monitoring unit for obtaining battery information by monitoring the battery state of each secondary battery belonging to a storage battery module and a wireless communication unit for, inside a metal chassis housing the storage battery module, wirelessly transmitting the battery information; and a management device for, inside the metal chassis, wirelessly communicating with and managing each of the storage battery modules. The management device transmits to each of the storage battery modules a measurement instruction including information specifying the next measurement timing at predetermined intervals and controls the cell monitoring unit to measure, according to the measurement instruction, the battery states of the storage batteries concurrently among a storage battery modules.
    Type: Application
    Filed: December 28, 2012
    Publication date: February 25, 2016
    Applicant: HITACHI, LTD.
    Inventors: Takashi TAKEUCHI, Takahide TERADA, Masayuki MIYAZAKI
  • Patent number: 9258730
    Abstract: To enable configuration and control of a camera at the same time while providing a certain band and low-delay communication for video and/or voice data, a wireless surveillance camera device includes: a signal processing unit that applies signal processing to the video and/or voice data; and a configuration unit that acquires configuration information data related to video parameters and/or wireless parameters in the device, wherein data communication of the video and/or voice data is performed for a wireless base station based on a polling system, and data communication of the configuration information data is performed for the wireless base station based on a carrier sense system.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 9, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Ryosuke Fujiwara, Makoto Katagishi, Masayuki Miyazaki
  • Publication number: 20160028467
    Abstract: An object of the disclosed invention is to provide a polling-based multihop communication system capable of achieving robust communication. Solving means thereof is a (multihop communication) wireless transmission system including, as wireless stations, a base station, a plurality of relay stations connected at multiple stages by using the base station as a root, and a plurality of terminals connected to the relay stations, in which the base station and the relay stations perform communication using polling in one or more service periods which have been allocated to each of the base and relay stations in time division in advance in a system cycle.
    Type: Application
    Filed: March 8, 2013
    Publication date: January 28, 2016
    Inventors: Ryosuke FUJIWARA, Makoto KATAGISHI, Masayuki MIYAZAKI
  • Patent number: 9217139
    Abstract: The purpose of the present invention is to provide a nuclease that secretes natural nonpathogenic microorganisms extracellularly, has higher specific activity than conventional nucleases, and is useful in nucleolytic degradation on an industrial scale. This purpose is achieved with an extracellularly secreted nuclease derived from Streptomyces bacteria, the nuclease having specific activity equal to or greater than the specific activity of Benzonase® when supplied to double-stranded DNA for 30 minutes at 37° C. in 20 mM Tris/HCl (pH 8.5) containing 1 mM MgCl2 and 1 mM CaCl2 after purification, using double-stranded DNA, single-stranded DNA, and RNA as substrates.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 22, 2015
    Assignee: JAPAN AGENCY FOR MARINE-EARTH SCIENCE AND TECHNOLOGY
    Inventors: Kozue Mori, Yukari Ohta, Yuji Hatada, Nobuyuki Nakamura, Masayuki Miyazaki
  • Publication number: 20150223099
    Abstract: To enable configuration and control of a camera at the same time while providing a certain band and low-delay communication for video and/or voice data, a wireless surveillance camera device includes: a signal processing unit that applies signal processing to the video and/or voice data; and a configuration unit that acquires configuration information data related to video parameters and/or wireless parameters in the device, wherein data communication of the video and/or voice data is performed for a wireless base station based on a polling system, and data communication of the configuration information data is performed for the wireless base station based on a carrier sense system.
    Type: Application
    Filed: June 12, 2013
    Publication date: August 6, 2015
    Inventors: Ryosuke Fujiwara, Makoto Katagishi, Masayuki Miyazaki
  • Publication number: 20150109991
    Abstract: A short-distance radio communication in a steady situation and a long-distance radio communication in an unsteady situation are dynamically switched in a radio communication network, and a steady communication and an unsteady communication are realized through the same radio communication network without affecting the respective communication qualities. A radio communication network system includes radio terminals that enable a multihop communication, and a radio base station. The radio base station and the radio terminals communicate with each other by at least two kinds of transmission radio wave powers. The transmission radio wave power is variably controlled according to a measurement data value by sensors of the radio terminals, or a content of data received by a data communication.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 23, 2015
    Applicant: Hitachi, Ltd.
    Inventors: Masayuki Miyazaki, Yasutaka Serizawa, Makoto Katagishi
  • Patent number: 8971318
    Abstract: A multistage relay communication system 100 includes a trunk network 1 and branch networks 2 (2a, 2b), each of which includes one or more communication apparatuses 4. The communication apparatus 4 can switch between a trunk mode to operate in the trunk network 1 and a branch mode to operate in the branch network 2. In the trunk network 1, the communication apparatus 4 carries out fixing of a communication path and redundancy of data based on a path table in order to achieve real-timeness and a data arrival rate. Meanwhile, in the branch network 2, when a communication failure occurs, the communication apparatus 4 autonomously searches for a communication path and constructs a path table, in order to at least secure a data arrival rate even if real-timeness is impaired within an allowable range.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: March 3, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Tsutomu Yamada, Noritaka Matsumoto, Kazuya Shimoyama, Yoshihito Sato, May Takada, Masayuki Miyazaki
  • Publication number: 20150036619
    Abstract: Provided is a wireless transmission system including a plurality of access points and an access controller. The access controller determines a start standard time for a polling period for the plurality of access points to perform polling communication with a plurality of wireless terminals. The access controller generates a scheduling setting information indicating timings when the plurality of access points perform polling communication with the plurality of wireless terminals during the polling period. The access controller transmits, to each of the plurality of access points, a polling period start signal including the start standard time and a corresponding portion of the scheduling setting information for each of the plurality of access points. The plurality of access points perform polling communication with the plurality of wireless terminals based on respective polling period start signals.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: Haruki NISHIMURA, Ryosuke FUJIWARA, Makoto KATAGISHI, Masayuki MIYAZAKI
  • Publication number: 20150024556
    Abstract: A semiconductor device includes an input electrode provided on a front surface of a semiconductor substrate of a first conductivity type and an output electrode provided on a rear surface of the semiconductor substrate. The device has reduced deterioration of electrical characteristics when manufactured by a method including introducing impurities into the rear surface of the semiconductor substrate; activating the impurities using a first annealing process to form a first semiconductor layer, which is a contact portion in contact with the output electrode, in a surface layer of the rear surface; radiating protons to the rear surface; and activating the protons radiated using a second annealing process to form a second semiconductor layer of the first conductivity type, which has a higher impurity concentration than the semiconductor substrate, in a region that is deeper than the first semiconductor layer from the rear surface of the semiconductor substrate.
    Type: Application
    Filed: March 29, 2013
    Publication date: January 22, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki Miyazaki, Takashi Yoshimura, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20140374793
    Abstract: A p+ collector layer is provided in a rear surface of a semiconductor substrate which will be an n? drift layer and an n+ field stop layer is provided in a region which is deeper than the p+ collector layer formed on the rear surface side. A front surface element structure is formed on the front surface of the semiconductor substrate and then protons are radiated to the rear surface of the semiconductor substrate at an acceleration voltage corresponding to the depth at which the n+ field stop layer is formed. A first annealing process is performed at an annealing temperature corresponding to the proton irradiation to change the protons into donors, thereby forming a field stop layer. Then, annealing is performed using annealing conditions suitable for the conditions of a plurality of proton irradiation processes to recover each crystal defect formed by each proton irradiation process.
    Type: Application
    Filed: March 29, 2013
    Publication date: December 25, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki Miyazaki, Takashi Yoshimura, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20140291723
    Abstract: A method of producing a seminconductor device is disclosed in which, after proton implantation is performed, a hydrogen-induced donor is formed by a furnace annealing process to form an n-type field stop layer. A disorder generated in a proton passage region is reduced by a laser annealing process to form an n-type disorder reduction region. As such, the n-type field stop layer and the n-type disorder reduction region are formed by the proton implantation. Therefore, it is possible to provide a stable and inexpensive semiconductor device which has low conduction resistance and can improve electrical characteristics, such as a leakage current, and a method for producing the semiconductor device.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Masayuki MIYAZAKI, Takashi YOSHIMURA, Hiroshi TAKISHITA, Hidenao KURIBAYASHI
  • Publication number: 20140293855
    Abstract: In an ad-hoc wireless communication system, when there occurs a disparity in the remaining amounts of the batteries of wireless routers, it is impossible for each wireless router to change a communication route by itself. As proposed herein, in an invented multi-hop wireless network for communication via a plurality of routers, a wireless router operating intermittently changes its intermittent operation interval depending on its circumstances by its own judgment.
    Type: Application
    Filed: May 21, 2012
    Publication date: October 2, 2014
    Inventors: Yasutaka Serizawa, Kenichi Mizugaki, Masayuki Miyazaki
  • Publication number: 20140246755
    Abstract: Hydrogen atoms and crystal defects are introduced into an n? semiconductor substrate by proton implantation. The crystal defects are generated in the n? semiconductor substrate by electron beam irradiation before or after the proton implantation. Then, a heat treatment for generating donors is performed. The amount of crystal defects is appropriately controlled during the heat treatment for generating donors to increase a donor generation rate. In addition, when the heat treatment for generating donors ends, the crystal defects formed by the electron beam irradiation and the proton implantation are recovered and controlled to an appropriate amount of crystal defects. Therefore, for example, it is possible to improve a breakdown voltage and reduce a leakage current.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Takashi YOSHIMURA, Masayuki MIYAZAKI, Hiroshi TAKISHITA, Hidenao KURIBAYASHI