Patents by Inventor Mehul B. Naik

Mehul B. Naik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200135459
    Abstract: Embodiments of the present disclosure provide methods and apparatus for forming and patterning features in a film stack disposed on a substrate. In one embodiment, a method for patterning a conductive layer on a substrate includes supplying a gas mixture comprising a chlorine containing gas at a first flow rate to etch a first conductive layer disposed on the substrate, lowing the chlorine containing gas in the first gas mixture to a second flow rate lower than the first flow rate to continue etching the first conductive layer, and increasing the chlorine containing gas in the first gas mixture to a third flow rate greater than the second flow rate to remove the first conductive layer from the substrate.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 30, 2020
    Inventors: Hao JIANG, He REN, Hao CHEN, Mehul B. NAIK
  • Patent number: 10636704
    Abstract: Aspects of the disclosure include methods of treating a substrate to remove one or more of voids, seams, and grain boundaries from interconnects formed on the substrate. The method includes heating the substrate in an environment pressurized at supra-atmospheric pressure. In one example, the substrate may be heated in a hydrogen-containing atmosphere.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Sean S. Kang, Keith Tatseun Wong, He Ren, Mehul B. Naik, Ellie Y. Yieh, Srinivas D. Nemani
  • Patent number: 10593592
    Abstract: Methods and apparatus for forming a metal silicide as nanowires for back-end interconnection structures for semiconductor applications are provided. In one embodiment, the method includes forming a metal silicide stack comprising as plurality of metal silicide layers on a substrate by a chemical vapor deposition process or a physical vapor deposition process, thermal treating the metal silicide stack in a processing chamber, applying a microwave power in the processing chamber while thermal treating the metal silicide layer; and maintaining a substrate temperature less than 400 degrees Celsius while thermal treating the metal silicide layer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 17, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Annamalai Lakshmanan, Kaushal K. Singh, Paul F. Ma, Mehul B. Naik, Andrew Cockburn, Ludovic Godet
  • Patent number: 10566188
    Abstract: Embodiments of the present disclosure generally relate to a film treatment process. In one embodiment, a transition metal oxide layer including a dopant is deposited on a substrate. After the doped transition metal oxide layer is deposited, a high pressure annealing process is performed on the doped transition metal oxide layer to densify the doped transition metal oxide without outgassing of the dopant. The high pressure annealing process is performed in an ambient environment including the dopant and at a pressure greater than 1 bar.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: February 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Maximillian Clemons, Michel Ranjit Frei, Mahendra Pakala, Mehul B. Naik, Srinivas D. Nemani, Ellie Y. Yieh
  • Patent number: 10546742
    Abstract: The present disclosure provides an interconnect formed on a substrate and methods for forming the interconnect on the substrate. In one embodiment, the method for forming an interconnect on a substrate includes depositing a barrier layer on the substrate, depositing a transition layer on the barrier layer, and depositing an etch-stop layer on the transition layer, wherein the transition layer shares a common element with the barrier layer, and wherein the transition layer shares a common element with the etch-stop layer.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: January 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Yana Cheng, Weifeng Ye
  • Publication number: 20200027782
    Abstract: Generally, embodiments described herein relate to methods for manufacturing an interconnect structure for semiconductor devices, such as in a dual subtractive etch process. An embodiment is a method for semiconductor processing. A titanium nitride layer is formed over a substrate. A hardmask layer is formed over the titanium nitride layer. The hardmask layer is patterned into a pattern. The pattern is transferred to the titanium nitride layer, where the transferring comprises etching the titanium nitride layer. After transferring the pattern to the titanium nitride layer, the hardmask layer is removed, where the removal comprises performing an oxygen-containing ash process.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Inventors: Hao JIANG, He REN, Hao CHEN, Mehul B. NAIK
  • Publication number: 20190371610
    Abstract: Methods for depositing a low resistivity nickel silicide layer used in forming an interconnect and electronic devices formed using the methods are described herein. In one embodiment, a method for depositing a layer includes positioning a substrate on a substrate support in a processing chamber, the processing chamber having a nickel target and a silicon target disposed therein, the substrate facing portions of the nickel target and the silicon target each having an angle of between about 10 degrees and about 50 degrees from the target facing surface of the substrate, flowing a gas into the processing chamber, applying an RF power to the nickel target and concurrently applying a DC power to the silicon target, concurrently sputtering silicon and nickel from the silicon and nickel targets, respectively, and depositing a NixSi1-x layer on the substrate, where x is between about 0.01 and about 0.99.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: He REN, Minrui YU, Mehul B. NAIK
  • Publication number: 20190355579
    Abstract: Embodiments of the present disclosure generally relate to a film treatment process. In one embodiment, a transition metal oxide layer including a dopant is deposited on a substrate. After the doped transition metal oxide layer is deposited, a high pressure annealing process is performed on the doped transition metal oxide layer to densify the doped transition metal oxide without outgassing of the dopant. The high pressure annealing process is performed in an ambient environment including the dopant and at a pressure greater than 1 bar.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 21, 2019
    Inventors: Maximillian CLEMONS, Michel Ranjit FREI, Mahendra PAKALA, Mehul B. NAIK, Srinivas D. NEMANI, Ellie Y. YIEH
  • Publication number: 20190348369
    Abstract: A method and apparatus for forming an interconnect on a substrate is provided. A protective layer is formed on the substrate and in a via formed on the substrate wherein the protective layer is resistant to a halogen containing material. A barrier layer is formed on top of the protective layer. The barrier layer comprises a halogen containing material. A metal layer is deposited over the barrier layer. In another embodiment, the protective layer is selectively deposited in the via.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 14, 2019
    Inventors: Mehul B. NAIK, Paul F. MA, Tae Hong HA, Srinivas GUGGILLA
  • Publication number: 20190311908
    Abstract: Methods for forming low resistivity metal silicide interconnects using one or a combination of a physical vapor deposition (PVD) process and an anneal process are described herein. In one embodiment, a method of forming a plurality of wire interconnects includes flowing a sputtering gas into a processing volume of a processing chamber, applying a power to a target disposed in the processing volume, forming a plasma in a region proximate to the sputtering surface of the target, and depositing the metal and silicon layer on the surface of the substrate. Herein, the first target comprises a metal silicon alloy and a sputtering surface thereof is angled with respect to a surface of the substrate at between about 10° and about 50°.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 10, 2019
    Inventors: He REN, Maximillian CLEMONS, Mei-Yee SHEK, Minrui YU, Bencherki MEBARKI, Mehul B. NAIK, Chentsau YING, Srinivas D. NEMANI
  • Patent number: 10410918
    Abstract: In one implementation, a method of forming a cobalt layer on a substrate is provided. The method comprises forming a barrier and/or liner layer on a substrate having a feature definition formed in a first surface of the substrate, wherein the barrier and/or liner layer is formed on a sidewall and bottom surface of the feature definition. The method further comprises exposing the substrate to a ruthenium precursor to form a ruthenium-containing layer on the barrier and/or liner layer. The method further comprises exposing the substrate to a cobalt precursor to form a cobalt seed layer atop the ruthenium-containing layer. The method further comprises forming a bulk cobalt layer on the cobalt seed layer to fill the feature definition.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyuan Wu, Nikolaos Bekiaris, Mehul B. Naik, Jin Hee Park, Mark Hyun Lee
  • Patent number: 10388533
    Abstract: Methods for depositing a low resistivity nickel silicide layer used in forming an interconnect and electronic devices formed using the methods are described herein. In one embodiment, a method for depositing a layer includes positioning a substrate on a substrate support in a processing chamber, the processing chamber having a nickel target and a silicon target disposed therein, the substrate facing portions of the nickel target and the silicon target each having an angle of between about 10 degrees and about 50 degrees from the target facing surface of the substrate, flowing a gas into the processing chamber, applying an RF power to the nickel target and concurrently applying a DC power to the silicon target, concurrently sputtering silicon and nickel from the silicon and nickel targets, respectively, and depositing a NixSi1-x layer on the substrate, where x is between about 0.01 and about 0.99.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 20, 2019
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Minrui Yu, Mehul B. Naik
  • Publication number: 20190189433
    Abstract: The present disclosure provides an interconnect formed on a substrate and methods for forming the interconnect on the substrate. In one embodiment, the method for forming an interconnect on a substrate includes depositing a barrier layer on the substrate, depositing a transition layer on the barrier layer, and depositing an etch-stop layer on the transition layer, wherein the transition layer shares a common element with the barrier layer, and wherein the transition layer shares a common element with the etch-stop layer.
    Type: Application
    Filed: December 31, 2018
    Publication date: June 20, 2019
    Inventors: He REN, Mehul B. NAIK, Yong CAO, Yana CHENG, Weifeng YE
  • Publication number: 20190172686
    Abstract: Methods and apparatus for forming a metal silicide as nanowires for back-end interconnection structures for semiconductor applications are provided. In one embodiment, the method includes forming a metal silicide layer on a substrate by a chemical vapor deposition process or a physical vapor deposition process, thermal treating the metal silicide layer in a processing chamber, applying a microwave power in the processing chamber while thermal treating the metal silicide layer; and maintaining a substrate temperature less than 400 degrees Celsius while thermal treating the metal silicide layer. In another embodiment, a method includes supplying a deposition gas mixture including at least a metal containing precursor and a reacting gas on a surface of a substrate, forming a plasma in the presence of the deposition gas mixture by exposure to microwave power, exposing the plasma to light radiation, and forming a metal silicide layer on the substrate from the deposition gas.
    Type: Application
    Filed: January 17, 2019
    Publication date: June 6, 2019
    Inventors: Bencherki MEBARKI, Annamalai LAKSHMANAN, Kaushal K. SINGH, Andrew COCKBURN, Ludovic GODET, Paul F. MA, Mehul B. NAIK
  • Publication number: 20190157145
    Abstract: Interconnects and methods for forming interconnects are described and disclosed herein. The interconnect contains a stack formed on a substrate having a via and a trench formed therein, a first metal formed from a first material of a first type deposited in the via, and a second metal formed from a second material of a second type deposited in the trench.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: He REN, Feiyue MA, Yu LEI, Kai WU, Mehul B. NAIK, Zhiyuan WU, Vikash BANTHIA, Hua AI
  • Publication number: 20190148150
    Abstract: Methods for forming a capping protection structure on a metal line layer formed in an insulating material in an interconnection structure are provided. In one embodiment, a method for forming capping protection on a metal line in an interconnection structure for semiconductor devices includes selectively forming a metal silicide layer on a metal line bounded by a dielectric bulk insulating layer in a back end interconnection structure formed on a substrate in a processing chamber; and forming a dielectric layer on the metal silicide layer.
    Type: Application
    Filed: October 27, 2018
    Publication date: May 16, 2019
    Inventors: Joung Joo LEE, Feng CHEN, Zhiyuan WU, Atashi BASU, Mehul B. NAIK, Yufei HU
  • Patent number: 10256144
    Abstract: Embodiments of the present disclosure generally relate an interconnect formed on a substrate and a method of forming the interconnect thereon. In an embodiment, a via and trench in a stack formed on the substrate. A bottom of the via is pre-treated using a first pre-treatment procedure. A sidewall of the via is pre-treated using a second pre-treatment procedure. A first metal fill material of a first type is deposited on the stack, in the via. A second metal fill material of a second type is deposited on the stack, in the trench.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 9, 2019
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Feiyue Ma, Yu Lei, Kai Wu, Mehul B. Naik, Zhiyuan Wu, Vikash Banthia, Hua Al
  • Publication number: 20190067201
    Abstract: Methods for forming a copper seed layer having improved anti-migration properties are described herein. In one embodiment, a method includes forming a first copper layer in a feature, forming a ruthenium layer over the first copper layer in the feature, and forming a second copper layer on the ruthenium layer in the feature. The ruthenium layer substantially locks the copper layer there below in place in the feature, preventing substantial physical migration thereof.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 28, 2019
    Inventors: Zhiyuan WU, Meng Chu TSENG, Mehul B. NAIK, Ben-Li SHEU
  • Publication number: 20190051557
    Abstract: Aspects of the disclosure include methods of treating a substrate to remove one or more of voids, seams, and grain boundaries from interconnects formed on the substrate. The method includes heating the substrate in an environment pressurized at supra-atmospheric pressure. In one example, the substrate may be heated in a hydrogen-containing atmosphere.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 14, 2019
    Inventors: Bencherki MEBARKI, Sean S. KANG, Keith Tatseun WONG, He REN, Mehul B. NAIK, Ellie Y. YIEH, Srinivas D. NEMANI
  • Patent number: 10170299
    Abstract: The present disclosure provides an interconnect formed on a substrate and methods for forming the interconnect on the substrate. In one embodiment, the method for forming an interconnect on a substrate includes depositing a barrier layer on the substrate, depositing a transition layer on the barrier layer, and depositing an etch-stop layer on the transition layer, wherein the transition layer shares a common element with the barrier layer, and wherein the transition layer shares a common element with the etch-stop layer.
    Type: Grant
    Filed: June 18, 2016
    Date of Patent: January 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Yana Cheng, Weifeng Ye