Patents by Inventor Mehul B. Naik

Mehul B. Naik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180366328
    Abstract: Methods for depositing a low resistivity nickel silicide layer used in forming an interconnect and electronic devices formed using the methods are described herein. In one embodiment, a method for depositing a layer includes positioning a substrate on a substrate support in a processing chamber, the processing chamber having a nickel target and a silicon target disposed therein, the substrate facing portions of the nickel target and the silicon target each having an angle of between about 10 degrees and about 50 degrees from the target facing surface of the substrate, flowing a gas into the processing chamber, applying an RF power to the nickel target and concurrently applying a DC power to the silicon target, concurrently sputtering silicon and nickel from the silicon and nickel targets, respectively, and depositing a NixSi1-x layer on the substrate, where x is between about 0.01 and about 0.99.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 20, 2018
    Inventors: He REN, Minrui YU, Mehul B. NAIK
  • Publication number: 20180315650
    Abstract: Embodiments of the present disclosure generally relate an interconnect formed on a substrate and a method of forming the interconnect thereon. In an embodiment, a via and trench in a stack formed on the substrate. A bottom of the via is pre-treated using a first pre-treatment procedure. A sidewall of the via is pre-treated using a second pre-treatment procedure. A first metal fill material of a first type is deposited on the stack, in the via. A second metal fill material of a second type is deposited on the stack, in the trench.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 1, 2018
    Inventors: He REN, Feiyue MA, Yu LEI, Kai WU, Mehul B. NAIK, Zhiyuan WU, Vikash BANTHIA, Hua AI
  • Patent number: 10113234
    Abstract: Embodiments described herein provide a method for sealing a porous low-k dielectric film. The method includes forming a sealing layer on the porous low-k dielectric film using a cyclic process. The cyclic process includes repeating a sequence of depositing a sealing layer on the porous low-k dielectric film and treating the sealing layer until the sealing layer achieves a predetermined thickness. The treating of each intermediate sealing layer generates more reactive sites on the surface of each intermediate sealing layer, which improves the quality of the resulting sealing layer.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: October 30, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bo Xie, Alexandros T. Demos, Vu Ngoc Tran Nguyen, Kelvin Chan, He Ren, Kang Sub Yim, Mehul B. Naik
  • Patent number: 10049927
    Abstract: Aspects of the disclosure include methods of treating a substrate to remove one or more of voids, seams, and grain boundaries from interconnects formed on the substrate. The method includes heating the substrate in an environment pressurized at supra-atmospheric pressure. In one example, the substrate may be heated in a hydrogen-containing atmosphere.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: August 14, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Sean Kang, Keith Tatseun Wong, He Ren, Mehul B. Naik, Ellie Y. Yieh, Srinivas D. Nemani
  • Publication number: 20180211872
    Abstract: In one implementation, a method of forming a cobalt layer on a substrate is provided. The method comprises forming a barrier and/or liner layer on a substrate having a feature definition formed in a first surface of the substrate, wherein the barrier and/or liner layer is formed on a sidewall and bottom surface of the feature definition. The method further comprises exposing the substrate to a ruthenium precursor to form a ruthenium-containing layer on the barrier and/or liner layer. The method further comprises exposing the substrate to a cobalt precursor to form a cobalt seed layer atop the ruthenium-containing layer. The method further comprises forming a bulk cobalt layer on the cobalt seed layer to fill the feature definition.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 26, 2018
    Inventors: Zhiyuan WU, Nikolaos BEKIARIS, Mehul B. NAIK, Jin Hee PARK, Mark Hyun LEE
  • Patent number: 10008448
    Abstract: An interconnect structure for use in semiconductor devices and a method for fabricating the same is described. The method includes positioning a substrate in a vacuum processing chamber, wherein the substrate comprises a copper layer having an exposed surface and a low-k dielectric layer having an exposed surface, forming a metal layer over the exposed surface of the copper layer, wherein the exposed surface of the low-k dielectric layer is free from the metal layer, and forming a metal-based dielectric layer over the metal layer and over at least part of the exposed low-k dielectric surface, wherein the metal-based dielectric layer comprises an aluminum compound.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: June 26, 2018
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Mei-yee Shek
  • Patent number: 10002834
    Abstract: A method and apparatus for forming an interconnect on a substrate is provided. A protective layer is formed on the substrate and in a via formed on the substrate wherein the protective layer is resistant to a halogen containing material. A barrier layer is formed on top of the protective layer. The barrier layer comprises a halogen containing material. A metal layer is deposited over the barrier layer. In another embodiment, the protective layer is selectively deposited in the via.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: June 19, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Mehul B. Naik, Paul F. Ma, Tae Hong Ha, Srinivas Guggilla
  • Publication number: 20180096888
    Abstract: Embodiments of the present disclosure are related to improved methods for forming an interconnect structure in a substrate. In one implementation, the method includes providing a substrate comprising a metal region and a dielectric region surrounding the metal region, selectively forming a cobalt-containing alloy cap layer on the metal region by exposing the substrate to a first precursor and a second precursor, the first precursor and the second precursor are selected from a group consisting of an aluminum-containing precursor, a cobalt-containing precursor, a ruthenium-containing precursor, a manganese-containing precursor, and a tungsten-containing precursor, wherein the first precursor is different from the second precursor.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 5, 2018
    Inventors: Mehul B. NAIK, Zhiyuan WU
  • Patent number: 9865466
    Abstract: Implementations described herein generally relate to methods of selective deposition of metal silicides. More specifically, implementations described herein generally relate to methods of forming nickel silicide nanowires for semiconductor applications. In one implementation, a method of processing a substrate is provided. The method comprises forming a silicon-containing layer on a surface of a substrate, forming a metal-containing layer comprising a transition metal on the silicon-containing layer, forming a confinement layer on exposed surfaces of the metal-containing layer and annealing the substrate at a temperature of less than 400 degrees Celsius to form a metal silicide layer from the silicon-containing layer and the metal-containing layer, wherein the confinement layer inhibits formation of metal-rich metal silicide phases.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: January 9, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Ellie Y. Yieh, Mehul B. Naik, Srinivas D. Nemani
  • Publication number: 20170358490
    Abstract: Aspects of the disclosure include methods of treating a substrate to remove one or more of voids, seams, and grain boundaries from interconnects formed on the substrate. The method includes heating the substrate in an environment pressurized at supra-atmospheric pressure. In one example, the substrate may be heated in a hydrogen-containing atmosphere.
    Type: Application
    Filed: October 24, 2016
    Publication date: December 14, 2017
    Inventors: Bencherki MEBARKI, Sean KANG, Keith Tatseun WONG, He REN, Mehul B. NAIK, Ellie Y. YIEH, Srinivas D. NEMANI
  • Patent number: 9793108
    Abstract: A method for sealing porous low-k dielectric films is provided. The method comprises exposing a substrate to UV radiation and a first reactive gas, wherein the substrate has an open feature defined therein, the open feature defined by a porous low-k dielectric layer and a conductive material, wherein the porous low-k dielectric layer is a silicon and carbon containing material and selectively forming a pore sealing layer in the open feature on exposed surfaces of the porous low-k dielectric layer using UV assisted photochemical vapor deposition.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: October 17, 2017
    Assignee: APPLIED MATERIAL, INC.
    Inventors: He Ren, Mehul B. Naik, Deenesh Padhi, Priyanka Dash, Bhaskar Kumar, Alexandros T. Demos
  • Publication number: 20170162511
    Abstract: An interconnect structure for use in semiconductor devices and a method for fabricating the same is described. The method includes positioning a substrate in a vacuum processing chamber, wherein the substrate comprises a copper layer having an exposed surface and a low-k dielectric layer having an exposed surface, forming a metal layer over the exposed surface of the copper layer, wherein the exposed surface of the low-k dielectric layer is free from the metal layer, and forming a metal-based dielectric layer over the metal layer and over at least part of the exposed low-k dielectric surface, wherein the metal-based dielectric layer comprises an aluminum compound.
    Type: Application
    Filed: February 22, 2017
    Publication date: June 8, 2017
    Inventors: He REN, Mehul B. NAIK, Yong CAO, Mei-yee SHEK
  • Patent number: 9640424
    Abstract: Embodiments described herein relate to methods for forming an air gap interconnect. A metal spacer layer is conformally deposited on a substrate having mandrel structures formed thereon. The metal spacer layer is etched to form spacer features and the mandrel structures are removed from the substrate. Various other dielectric deposition, patterning and etching steps may be performed to desirably pattern materials present on the substrate. Ultimately, a trench is formed between adjacent spacer features and a capping layer is deposited over the trench to form an air gap between the adjacent spacer features. For packaging purposes, an interconnect via may be configured to contact at least one of the spacer features adjacent the air gap.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: May 2, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik
  • Patent number: 9613859
    Abstract: Methods for direct deposition of a metal silicide nanowire for back-end interconnection structures for semiconductor applications are provided. In one embodiment, the method includes positioning a substrate in a processing region of a process chamber, the substrate having a first surface comprising a non-dielectric material; and a dielectric layer formed on the first surface. An opening is formed in the dielectric layer, the opening exposing at least a portion of the first surface, the opening having sidewalls. A metal silicide seed is deposited in the opening using a PVD process, wherein the PVD process is performed with either no bias or a bias which creates deposition on the sidewall which is less than 1% of the deposition on the first surface. A metal silicide layer is then selectively deposited on the metal silicide seed using a metal-silicon organic precursor, creating the metal silicide nanowire.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: April 4, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Bencherki Mebarki, Kaushal K. Singh, Paul F. Ma, Mehul B. Naik, Andrew Cockburn, Ludovic Godet
  • Publication number: 20170092502
    Abstract: Implementations described herein generally relate to methods of selective deposition of metal silicides. More specifically, implementations described herein generally relate to methods of forming nickel silicide nanowires for semiconductor applications. In one implementation, a method of processing a substrate is provided. The method comprises forming a silicon-containing layer on a surface of a substrate, forming a metal-containing layer comprising a transition metal on the silicon-containing layer, forming a confinement layer on exposed surfaces of the metal-containing layer and annealing the substrate at a temperature of less than 400 degrees Celsius to form a metal silicide layer from the silicon-containing layer and the metal-containing layer, wherein the confinement layer inhibits formation of metal-rich metal silicide phases.
    Type: Application
    Filed: August 18, 2016
    Publication date: March 30, 2017
    Inventors: Bencherki MEBARKI, Ellie Y. YIEH, Mehul B. NAIK, Srinivas D. NEMANI
  • Patent number: 9601431
    Abstract: An interconnect structure for use in semiconductor devices and a method for fabricating the same is described. The method includes positioning a substrate in a vacuum processing chamber. The substrate has an exposed copper surface and an exposed low-k dielectric surface. A metal layer is formed over the copper surface but not over the low-k dielectric surface. A metal-based dielectric layer is formed over the metal layer and the low-k dielectric layer.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 21, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: He Ren, Mehul B. Naik, Yong Cao, Mei-yee Shek, Yana Cheng, Sree Rangasai V. Kesapragada
  • Publication number: 20170005041
    Abstract: The present disclosure provides an interconnect formed on a substrate and methods for forming the interconnect on the substrate. In one embodiment, the method for forming an interconnect on a substrate includes depositing a barrier layer on the substrate, depositing a transition layer on the barrier layer, and depositing an etch-stop layer on the transition layer, wherein the transition layer shares a common element with the barrier layer, and wherein the transition layer shares a common element with the etch-stop layer.
    Type: Application
    Filed: June 18, 2016
    Publication date: January 5, 2017
    Inventors: He REN, Mehul B. NAIK, Yong CAO, Yana CHENG, Weifeng YE
  • Publication number: 20160379819
    Abstract: A method for sealing porous low-k dielectric films is provided. The method comprises exposing a substrate to UV radiation and a first reactive gas, wherein the substrate has an open feature defined therein, the open feature defined by a porous low-k dielectric layer and a conductive material, wherein the porous low-k dielectric layer is a silicon and carbon containing material and selectively forming a pore sealing layer in the open feature on exposed surfaces of the porous low-k dielectric layer using UV assisted photochemical vapor deposition.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: He REN, Mehul B. NAIK, Deenesh PADHI, Priyanka DASH, Bhaskar KUMAR, Alexandros T. DEMOS
  • Patent number: 9508561
    Abstract: Embodiments of the present invention provide methods for forming an interconnection structure in semiconductor devices without breaking vacuum with minimum oxidation/atmosphere exposure. In one embodiment, a method for forming an interconnection structure for semiconductor devices includes supplying a barrier layer etching gas mixture into a first processing chamber having a substrate disposed therein to etch portions of a barrier layer exposed by a patterned metal layer until the underlying substrate is exposed, the first processing chamber disposed in a processing system, and forming a liner layer on the substrate covering the etched barrier layer in a second processing chamber disposed in the processing system.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: November 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Mehul B. Naik, Srinivas D. Nemani, Takehito Koshizawa, He Ren
  • Publication number: 20160268207
    Abstract: A method and apparatus for forming an interconnect on a substrate is provided. A protective layer is formed on the substrate and in a via formed on the substrate wherein the protective layer is resistant to a halogen containing material. A barrier layer is formed on top of the protective layer. The barrier layer comprises a halogen containing material. A metal layer is deposited over the barrier layer. In another embodiment, the protective layer is selectively deposited in the via.
    Type: Application
    Filed: May 13, 2015
    Publication date: September 15, 2016
    Inventors: Mehul B. NAIK, Paul F. MA, Tae Hong HA, Srinivas GUGGILLA