Patents by Inventor Mei-Ling Chen

Mei-Ling Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150279980
    Abstract: A high-performance reverse-conduction field-stop (RCFS) insulated gate bipolar transistor (IGBT) includes a first conductive type substrate, a plurality of trenches defined on a bottom face of the substrate, a plurality of first conductive type doping regions formed on bottom face of the trenches, a second conductive type doping region formed on bottom face of the substrate, and a first conductive type field stop doping region formed in the substrate and separated from the bottom face of the substrate by a field stop depth, where the field stop depth is larger than a depth of the trench. Due to a separation between the first conductive type doping regions and the second conductive type doping region, Zener diode can be prevented from forming on bottom side of the substrate and the performance of IGBT can be accordingly enhanced.
    Type: Application
    Filed: October 28, 2014
    Publication date: October 1, 2015
    Inventors: Mei-Ling CHEN, Hung-Hsin KUO, Yi-Lun HSIA, Chung-Chen CHANG
  • Publication number: 20150201501
    Abstract: A selectively repairing process for a barrier layer is provided. A repair layer is formed by chemical vapor deposition using an organosilicon compound as a precursor gas. The precursor gas adsorbed on a low-k dielectric layer exposed by defects in a barrier layer is transformed to a porous silicon oxide layer has a density more than the density of the low-k dielectric layer.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing CO., LTD.
    Inventors: Chih-Chien Chi, Chung-Chi Ko, Mei-Ling Chen, Hung-Yi Huang, Szu-Ping Tung, Ching-Hua Hsieh
  • Publication number: 20150194343
    Abstract: A self-aligned repairing process for a barrier layer is provided. A repair layer is formed by chemical vapor deposition using an organometallic compound as a precursor gas. The precursor gas adsorbed on a dielectric layer exposed by defects in a barrier layer is transformed to an insulating metal oxide layer, and the precursor gas adsorbed on the barrier layer is transformed to a metal layer.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chien CHI, Chung-Chi KO, Mei-Ling CHEN, Hung-Yi HUANG, Szu-Ping TUNG, Ching-Hua HSIEH
  • Publication number: 20150162454
    Abstract: A trench MOS PN junction diode structure includes a first conductive type substrate, a plurality of trenches defined on a face of the first conductive type substrate, a gate oxide layer formed at least on inner sidewalls of the trenches, a polysilicon layer formed in the trenches, a second conductive type low-concentration ion-implanted region formed at least in the first conductive type substrate, a high-concentration ion-implanted region formed below the trenches, and an electrode layer covering the first conductive type substrate, the second conductive type low-concentration ion-implanted region, the gate oxide and the polysilicon layer. The high-concentration ion-implanted region below the trenches provides pinch-off voltage sustention in reversed bias operation to reduce leakage current of the trench MOS PN junction diode structure.
    Type: Application
    Filed: November 10, 2014
    Publication date: June 11, 2015
    Inventor: Mei-Ling CHEN
  • Patent number: 9029235
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: May 12, 2015
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Patent number: 9004914
    Abstract: An Active Energy Assist (AEA) baking chamber includes an AEA light source assembly and a heater pedestal. The AEA baking chamber further includes a controller for controlling a power input to the AEA light source assembly and a power input to the heater pedestal. A method of forming interconnects on a substrate includes etching a substrate and wet cleaning the etched substrate. The method further includes active energy assist (AEA) baking the substrate after the wet-cleaning. The AEA baking includes placing the substrate on a heater pedestal in an AEA chamber, exposing the substrate to light having a wavelength equal to or greater than 400 nm, wherein said light is emitted by a light source and controlling the light source and the heater pedestal using a controller.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chi Ko, Chia Cheng Chou, Keng-Chu Lin, Joung-Wei Liou, Shwang-Ming Jeng, Mei-Ling Chen
  • Patent number: 8993427
    Abstract: A method for manufacturing a rectifier with a vertical MOS structure is provided. A first multi-trench structure and a first mask layer are formed at a first side of the semiconductor substrate. A second multi-trench structure is formed in the second side of the semiconductor substrate. A gate oxide layer, a polysilicon structure and a metal sputtering layer are sequentially formed on the second multi-trench structure. The rectifier further includes a wet oxide layer and a plurality of doped regions. The wet oxide layer is formed on a surface of the first multi-trench structure and in the semiconductor substrate. The doping regions are formed on a region between the semiconductor substrate and the second multi-trench structure, and located beside the mask layer. The metal sputtering layer is formed on the first mask layer corresponding to the first multi-trench structure.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 31, 2015
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo
  • Publication number: 20150084136
    Abstract: A MOS P-N junction diode includes a semiconductor substrate, a mask layer, a guard ring, a gate oxide layer, a polysilicon structure, a polysilicon oxide layer, a central conductive layer, ion implantation layer, a channel region, and a metallic sputtering layer. For manufacturing the MOS P-N junction diode, a mask layer is formed on a semiconductor substrate. A gate oxide layer is formed on the semiconductor substrate, and a polysilicon structure is formed on the gate oxide layer, and a polysilicon oxide layer formed on the polysilicon structure. A guard ring, a central conductive layer and a channel region are formed in the semiconductor substrate. An ion implantation layer is formed within the guard ring and the central conductive layer. Afterwards, a metallic sputtering layer is formed, and the mask layer is partially exposed.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Inventors: Hung-Hsin Kuo, Mei-Ling Chen
  • Publication number: 20150054115
    Abstract: A trench Schottky rectifier device includes a substrate having a first conductivity type, a plurality of trenches formed in the substrate, and an insulating layer formed on sidewalls of the trenches. The trenches are filled with conductive structure. There is an electrode overlying the conductive structure and the substrate, and thus a Schottky contact forms between the electrode and the substrate. A plurality of embedded doped regions having a second conductivity type are formed in the substrate and located under the trenches. Each doped region and the substrate form a PN junction to pinch off current flowing toward the Schottky contact so as to suppress current leakage.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 26, 2015
    Inventors: Kou-Liang CHAO, Mei-Ling CHEN, Tse-Chuan SU, Hung-Hsin KUO
  • Publication number: 20150050791
    Abstract: A method for manufacturing a rectifier with a vertical MOS structure is provided. A first multi-trench structure and a first mask layer are formed at a first side of the semiconductor substrate. A second multi-trench structure is formed in the second side of the semiconductor substrate. A gate oxide layer, a polysilicon structure and a metal sputtering layer are sequentially formed on the second multi-trench structure. The rectifier further includes a wet oxide layer and a plurality of doped regions. The wet oxide layer is formed on a surface of the first multi-trench structure and in the semiconductor substrate. The doping regions are formed on a region between the semiconductor substrate and the second multi-trench structure, and located beside the mask layer. The metal sputtering layer is formed on the first mask layer corresponding to the first multi-trench structure.
    Type: Application
    Filed: September 25, 2014
    Publication date: February 19, 2015
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo
  • Patent number: 8927401
    Abstract: A trench Schottky diode and its manufacturing method are provided. The trench Schottky diode includes a semiconductor substrate having therein a plurality of trenches, a gate oxide layer, a polysilicon structure, a guard ring and an electrode. At first, the trenches are formed in the semiconductor substrate by an etching step. Then, the gate oxide layer and the polysilicon structure are formed in the trenches and protrude above a surface of the semiconductor substrate. The guard ring is formed to cover a portion of the resultant structure. At last, the electrode is formed above the guard ring and the other portion not covered by the guard ring. The protruding gate oxide layer and the protruding polysilicon structure can avoid cracks occurring in the trench structure.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 6, 2015
    Assignee: PFC Device Corp.
    Inventors: Kou-Liang Chao, Hung-Hsin Kuo, Tse-Chuan Su, Mei-Ling Chen
  • Patent number: 8921949
    Abstract: A MOS P-N junction diode includes a semiconductor substrate, a mask layer, a guard ring, a gate oxide layer, a polysilicon structure, a central conductive layer, a silicon nitride layer, a metal diffusion layer, a channel region, and a metal sputtering layer. For manufacturing the MOS P-N junction diode, a mask layer is formed on a semiconductor substrate. A gate oxide layer is formed on the semiconductor substrate, and a polysilicon structure is formed on the gate oxide layer. A guard ring, a central conductive layer and a channel region are formed in the semiconductor substrate. A silicon nitride layer is formed on the central conductive layer. A metal diffusion layer is formed within the guard ring and the central conductive layer. Afterwards, a metal sputtering layer is formed, and the mask layer is partially exposed.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: December 30, 2014
    Assignee: PFC Device Corp.
    Inventors: Kou-Liang Chao, Hung-Hsin Kuo, Tse-Chuan Su, Mei-Ling Chen
  • Patent number: 8890279
    Abstract: A trench Schottky rectifier device includes a substrate having a first conductivity type, a plurality of trenches formed in the substrate, and an insulating layer formed on sidewalls of the trenches. The trenches are filled with conductive structure. There is an electrode overlying the conductive structure and the substrate, and thus a Schottky contact forms between the electrode and the substrate. A plurality of embedded doped regions having a second conductivity type are formed in the substrate and located under the trenches. Each doped region and the substrate form a PN junction to pinch off current flowing toward the Schottky contact so as to suppress current leakage.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: November 18, 2014
    Assignee: PFC Device Corp.
    Inventors: Kou-Liang Chao, Mei-Ling Chen, Tse-Chuan Su, Hung-Hsin Kuo
  • Patent number: 8877083
    Abstract: A Ultra-Violet (UV) treatment is performed on an exposed surface of a low-k dielectric layer and an exposed surface of a metal line. After the UV treatment, an organo-metallic soak process is performed on the exposed surface of the low-k dielectric layer and the exposed surface of the metal line. The organo-metallic soak process is performed using a process gas including a metal bonded to an organic group.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Mei-Ling Chen, Hui-Chun Yang, Po-Cheng Shih, Joung-Wei Liou, Shwang-Ming Jeng
  • Publication number: 20140308799
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Application
    Filed: May 26, 2014
    Publication date: October 16, 2014
    Applicant: PFC DEVICE CORP.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Patent number: 8853748
    Abstract: A method for manufacturing a rectifier with a vertical MOS structure is provided. A first trench structure and a first mask layer are formed at a first side of the semiconductor substrate. A second trench structure is formed in the second side of the semiconductor substrate. A gate oxide layer, a polysilicon structure and a metal sputtering layer are sequentially formed on the second trench structure. The rectifier further includes a wet oxide layer and a plurality of doped regions. The wet oxide layer is formed on a surface of the first multi-trench structure and in the semiconductor substrate. The doping regions are formed on a region between the semiconductor substrate and the second trench structure, and located beside the mask layer. The metal sputtering layer is formed on the first mask layer corresponding to the first trench structure.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: October 7, 2014
    Assignee: PFC Device Corp.
    Inventors: Kuo-Liang Chao, Mei-Ling Chen, Hung-Hsin Kuo
  • Patent number: 8809946
    Abstract: A wide trench termination structure for semiconductor device includes a wide trench structure defined on a semiconductor substrate and having a width larger than that of narrow trench structures on an active region of the semiconductor device, an oxide layer arranged on an inner face of the wide trench structure, at least one trench polysilicon layer arranged on the oxide layer and on inner sidewall of the wide trench structure, a metal layer arranged on the oxide layer not covered by the trench polysilicon layer and on the trench polysilicon layer, and a field oxide layer arranged on the semiconductor substrate and outside the wide trench structure.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: August 19, 2014
    Assignee: PFC Device Corp.
    Inventors: Hung-Hsin Kuo, Mei-Ling Chen, Kuo-Liang Chao
  • Publication number: 20140167205
    Abstract: A super junction for semiconductor device includes a silicon substrate with a first conductive type epitaxial layer, a plurality of highly-doped second conductive type columns formed in the first conductive type epitaxial layer, and a plurality of lightly-doped (first conductive type or second conductive type) side walls formed on outer surfaces of the highly-doped second conductive type. The semiconductor device is super-junction MOSFET, super junction MOSFET, super junction Schottky rectifier, super junction IGBT, thyristor or super junction diode.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: PFC DEVICE HOLDINGS LIMITED
    Inventors: Paul Chung-Chen CHANG, Kuo-Liang CHAO, Mei-Ling CHEN, Lung-Ching KAO
  • Patent number: 8753963
    Abstract: A multi-trench termination structure for semiconductor device is disclosed, where the semiconductor device includes a semiconductor substrate and an active structure region. The multi-trench termination structure includes multiple trenches defined on an exposed face of the semiconductor substrate, a first mask layer formed on a partial exposed surface of the semiconductor substrate and corresponding to a termination structure region of the semiconductor device, a gate insulation layer formed in the trenches, a conductive layer formed on the gate insulation layer and protruding out of the exposed surface of the semiconductor substrate, and a metal layer formed over the first mask layer and conductive layer on the termination structure region of the semiconductor device.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: June 17, 2014
    Assignee: PFC Device Corp.
    Inventors: Lung-Ching Kao, Mei-Ling Chen, Kuo-Liang Chao, Hung-Hsin Kuo
  • Patent number: 8735228
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 27, 2014
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao