Patents by Inventor Michael C. Smayling

Michael C. Smayling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140380260
    Abstract: A method is disclosed for defining an integrated circuit. The method includes generating a digital data file that includes both electrical connection information and physical topology information for a number of circuit components. The method also includes operating a computer to execute a layout generation program. The layout generation program reads the electrical connection and physical topology information for each of the number of circuit components from the digital data file and automatically creates one or more layout structures necessary to form each of the number of circuit components in a semiconductor device fabrication process, such that the one or more layout structures comply with the physical topology information read from the digital data file. The computer is also operated to store the one or more layout structures necessary to form each of the number of circuit components in a digital format on a computer readable medium.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Michael C. Smayling, Daryl Fox, Jonathan R. Quandt, Scott T. Becker
  • Patent number: 8863063
    Abstract: A first gate level feature forms gate electrodes of a first finfet transistor of a first transistor type and a first finfet transistor of a second transistor type. A second gate level feature forms a gate electrode of a second finfet transistor of the first transistor type. A third gate level feature forms a gate electrode of a second finfet transistor of the second transistor type. The gate electrodes of the second finfet transistors of the first and second transistor types are electrically connected to each other. The gate electrodes of the second finfet transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first finfet transistors of the first and second transistor types are positioned.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling, Dhrumil Gandhi, Jim Mali, Carole Lambert, Jonathan R. Quandt, Daryl Fox
  • Publication number: 20140291731
    Abstract: A first linear-shaped conductive structure (LCS) forms gate electrodes (GE's) of a first transistor of a first transistor type and a first transistor of a second transistor type. A second LCS forms a GE of a second transistor of the first transistor type. A third LCS forms a GE of a second transistor of the second transistor type. A fourth LCS forms a GE of a third transistor of the first transistor type. A fifth LCS forms a GE of a third transistor of the second transistor type. A sixth LCS forms a GE of a fourth transistor of the first transistor type and a fourth transistor of the second transistor type. Transistors of the first transistor type are collectively separated from transistors of the second transistor type by an inner region. The second, third, fourth, and fifth LCS's have respective electrical connection areas arranged relative to the inner region.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8839175
    Abstract: A method is disclosed for defining an integrated circuit. The method includes generating a digital data file that includes both electrical connection information and physical topology information for a number of circuit components. The method also includes operating a computer to execute a layout generation program. The layout generation program reads the electrical connection and physical topology information for each of the number of circuit components from the digital data file and automatically creates one or more layout structures necessary to form each of the number of circuit components in a semiconductor device fabrication process, such that the one or more layout structures comply with the physical topology information read from the digital data file. The computer is also operated to store the one or more layout structures necessary to form each of the number of circuit components in a digital format on a computer readable medium.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 16, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Daryl Fox, Jonathan R. Quandt, Scott T. Becker
  • Publication number: 20140246733
    Abstract: A semiconductor chip includes four linear-shaped conductive structures that each form a gate electrode of corresponding transistor of a first transistor type and a gate electrode of a corresponding transistor of a second transistor type. First and second ones of the four linear-shaped conductive structures are positioned to have their lengthwise-oriented centerlines separated by a gate electrode pitch. Third and fourth ones of the four linear-shaped conductive structures are also positioned to have their lengthwise-oriented centerlines separated by the gate electrode pitch. The first and third ones of the four linear-shaped conductive structures are positioned to have their lengthwise-oriented centerlines co-aligned and are separated by a first end-to-end spacing.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8823062
    Abstract: A first linear-shaped conductive structure (LSCS) forms gate electrodes of a first p-transistor and a first n-transistor. A second LSCS forms a gate electrode of a second p-transistor. A third LSCS forms a gate electrode of a second n-transistor, and is separated from the second LSCS by a first end-to-end spacing (EES). A fourth LSCS forms a gate electrode of a third p-transistor. A fifth LSCS forms a gate electrode of a third n-transistor, and is separated from the fourth LSCS by a second EES. A sixth LSCS forms gate electrodes of a fourth p-transistor and a fourth n-transistor. An end of the second LSCS adjacent to the first EES is offset from an end of the fourth LSCS adjacent to the second EES, and/or an end of the third LSCS adjacent to the first EES is offset from an end of the fifth LSCS adjacent to the second EES.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 2, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20140175565
    Abstract: A method is disclosed for defining a multiple patterned cell layout for use in an integrated circuit design. A layout is defined for a level of a cell in accordance with a dynamic array architecture so as to include a number of layout features. The number of layout features are linear-shaped and commonly oriented. The layout is split into a number of sub-layouts for the level of the cell. Each of the number of layout features in the layout is allocated to any one of the number of sub-layouts. Also, the layout is split such that each sub-layout is independently fabricatable. The sub-layouts for the level of the cell are stored on a computer readable medium.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8759882
    Abstract: An integrated circuit device includes a plurality of dynamic array sections, each of which includes three or more linear conductive segments formed within its gate electrode level in a parallel manner to extend lengthwise in a first direction. An adjoining pair of dynamic array sections are positioned to have co-located portions of outer peripheral boundary segments extending perpendicular to the first direction. Some of the three or more linear conductive segments within the gate electrode levels of the adjoining pair of dynamic array sections are co-aligned in the first direction and separated by an end-to-end spacing that spans the co-located portions of outer peripheral boundary segments of the adjoining pair of dynamic array sections. Each of these end-to-end spacings is sized to ensure that each gate electrode level manufacturing assurance halo portion of the first adjoining pair of dynamic array sections is devoid of the co-aligned linear conductive segments.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: June 24, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20140167185
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Publication number: 20140167183
    Abstract: A layer of a mask material is deposited on a substrate. A beam of energy is scanned across the mask material in a rasterized linear pattern and in accordance with a scan pitch that is based on a pitch of conductive structure segments to be formed on the substrate. The beam of energy is defined to transform the mask material upon which the beam of energy is incident into a removable state. During scanning the beam of energy across the mask material, the beam of energy is turned on at locations where a conductive structure is to be formed on the substrate, and the beam of energy is turned off at locations where a conductive structure is not to be formed on the substrate.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8756551
    Abstract: A method is provided for designing an integrated circuit device. The method includes placing four transistors of a first transistor type and four transistors of a second transistor type within a gate electrode level. Each of the transistors includes a respective linear-shaped gate electrode segment positioned to extend lengthwise in a first direction. The transistors of the first and second transistor types are placed according to a substantially equal centerline-to-centerline spacing as measured perpendicular to the first direction. A first linear conductive segment is placed to electrically connect the gate electrodes of the first transistors of the first and second transistor types. A second linear conductive segment is placed to electrically connect the gate electrodes of the fourth transistors of the first and second transistor types. A third linear conductive segment is placed beside either the first or second linear conductive segment.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: June 17, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8680626
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8667443
    Abstract: A method is disclosed for defining a multiple patterned cell layout for use in an integrated circuit design. A layout is defined for a level of a cell in accordance with a dynamic array architecture so as to include a number of layout features. The number of layout features are linear-shaped and commonly oriented. The layout is split into a number of sub-layouts for the level of the cell. Each of the number of layout features in the layout is allocated to any one of the number of sub-layouts. Also, the layout is split such that each sub-layout is independently fabricatable. The sub-layouts for the level of the cell are stored on a computer readable medium.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: March 4, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8658542
    Abstract: A layer of a mask material is deposited on a substrate. A beam of energy is scanned across the mask material in a rasterized linear pattern and in accordance with a scan pitch that is based on a pitch of conductive structure segments to be formed on the substrate. The beam of energy is defined to transform the mask material upon which the beam of energy is incident into a removable state. During scanning the beam of energy across the mask material, the beam of energy is turned on at locations where a conductive structure is to be formed on the substrate, and the beam of energy is turned off at locations where a conductive structure is not to be formed on the substrate.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: February 25, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Publication number: 20140030890
    Abstract: A number of first hard mask portions are formed on a dielectric layer to vertically shadow a respective one of a number of underlying gate structures. A number of second hard mask filaments are formed adjacent to each side surface of each first hard mask portion. A width of each second hard mask filament is set to define an active area contact-to-gate structure spacing. A first passage is etched between facing exposed side surfaces of a given pair of neighboring second hard mask filaments and through a depth of the semiconductor wafer to an active area. A second passage is etched through a given first hard mask portion and through a depth of the semiconductor wafer to a top surface of the underlying gate structure. An electrically conductive material is deposited within both the first and second passages to respectively form an active area contact and a gate contact.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 30, 2014
    Applicant: TELA INNOVATIONS, INC.
    Inventor: Michael C. Smayling
  • Publication number: 20130249013
    Abstract: A first linear-shaped conductive structure (LSCS) forming gate electrodes of both a first p-transistor and a first n-transistor. A second LSCS forming a gate electrode of a second p-transistor and including an extension portion extending away therefrom. A third LSCS forming a gate electrode of a second n-transistor and including an extension portion extending away therefrom. A fourth LSCS forming a gate electrode of a third p-transistor and including an extension portion extending away therefrom. A fifth LSCS forming a gate electrode of a third n-transistor and including an extension portion extending away therefrom. A sixth LSCS forming gate electrodes of both a fourth p-transistor and a fourth n-transistor. Four contact structures respectively contacting the extension portions of the second, third, fourth, and fifth LSCS's, such that at least two of the extension portions extend different distances beyond their contact structure.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 26, 2013
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8541879
    Abstract: A number of first hard mask portions are formed on a dielectric layer to vertically shadow a respective one of a number of underlying gate structures. A number of second hard mask filaments are formed adjacent to each side surface of each first hard mask portion. A width of each second hard mask filament is set to define an active area contact-to-gate structure spacing. A first passage is etched between facing exposed side surfaces of a given pair of neighboring second hard mask filaments and through a depth of the semiconductor wafer to an active area. A second passage is etched through a given first hard mask portion and through a depth of the semiconductor wafer to a top surface of the underlying gate structure. An electrically conductive material is deposited within both the first and second passages to respectively form an active area contact and a gate contact.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 24, 2013
    Assignee: Tela Innovations, Inc.
    Inventor: Michael C. Smayling
  • Publication number: 20130207165
    Abstract: An integrated circuit includes four parallel positioned linear-shaped structures each including a gate electrode portion and an extension portion. Gate electrode portions of two of the four linear-shaped structures respectively form gate electrodes of first and second transistors of a first transistor type. Gate electrode portions of two of the four linear-shaped structures respectively form a gate electrodes of first and second transistors of a second transistor type. Four contacting structures are respectively connected to the extension portions of the four linear-shaped structures such that each extension portion has a respective contact-to-end distance. At least two of the contact-to-end distances are different. A fifth linear-shaped structure forms gate electrodes of transistors respectively positioned next to the first transistors of the first and second transistor types.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20130207199
    Abstract: A first gate level feature forms gate electrodes of a first finfet transistor of a first transistor type and a first finfet transistor of a second transistor type. A second gate level feature forms a gate electrode of a second finfet transistor of the first transistor type. A third gate level feature forms a gate electrode of a second finfet transistor of the second transistor type. The gate electrodes of the second finfet transistors of the first and second transistor types are electrically connected to each other. The gate electrodes of the second finfet transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first finfet transistors of the first and second transistor types are positioned.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Inventors: Scott T. Becker, Michael C. Smayling, Dhrumil Gandhi, Jim Mali, Carole Lambert, Jonathan R. Quandt, Daryl Fox
  • Publication number: 20130200462
    Abstract: A first linear-shaped conductive structure (LSCS) forms gate electrodes of a first p-transistor and a first n-transistor. A second LSCS forms a gate electrode of a second p-transistor. A third LSCS forms a gate electrode of a second n-transistor, and is separated from the second LSCS by a first end-to-end spacing (EES). A fourth LSCS forms a gate electrode of a third p-transistor. A fifth LSCS forms a gate electrode of a third n-transistor, and is separated from the fourth LSCS by a second EES. A sixth LSCS forms gate electrodes of a fourth p-transistor and a fourth n-transistor. An end of the second LSCS adjacent to the first EES is offset from an end of the fourth LSCS adjacent to the second EES, and/or an end of the third LSCS adjacent to the first EES is offset from an end of the fifth LSCS adjacent to the second EES.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Inventors: Scott T. Becker, Michael C. Smayling