Patents by Inventor Michael D. Atchley

Michael D. Atchley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190292030
    Abstract: Some embodiments include apparatuses to fulfill customer orders comprising a motorized transport unit; a product pick unit (PPU) that cooperate with the motorized transport unit; a wireless communication network; and a central computer system configured to communicate with the multiple motorized transport units and the plurality of product pick units, and comprises a control circuit and memory storing instructions executed to cause the control circuit to: communicate an instruction to the motorized transport unit and direct the motorized transport unit to transport the product pick unit to a determined first location within the shopping facility proximate to where a first product having been ordered is located; and communicate an instruction to the product pick unit cooperated with the motorized transport unit and direct the product pick unit to retrieve the first product.
    Type: Application
    Filed: June 14, 2019
    Publication date: September 26, 2019
    Inventors: Donald R. High, Shuvro Chakrobartty, David C. Winkle, Robert C. Taylor, Michael D. Atchley, Karl Kay, Brian G. McHale, John P. Thompson
  • Patent number: 10423169
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190284034
    Abstract: Methods and apparatuses are provided, some apparatuses comprise: a location controller separate from a motorized transport unit, comprising: a transceiver configured to receive communications from the motorized transport unit; a control circuit; a memory storing computer instructions that when executed by the control circuit cause the control circuit to perform the steps of: obtain, from the communications, a unique light source identifier of a light source detected by the motorized transport unit, and relative distance information determined by the motorized transport unit through an optical measurement; process the at least one unique light source identifier and the relative distance information relative to a mapping of the shopping facility; and determine, in response to the processing, a location of the motorized transport unit within the shopping facility as a function of the at least one unique light source identifier and the relative distance information.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 19, 2019
    Inventors: Donald R. High, Michael D. Atchley, Brian G. McHale, Robert C. Taylor, David C. Winkle
  • Publication number: 20190271988
    Abstract: In some embodiments, systems and methods are provided herein useful for delivering merchandise using autonomous ground vehicles (AGVs) linking to and unlinking from other AGVs. In some embodiments, the system includes a plurality of AGVs where each AGV has a storage area and couplers at each end of the AGV and a first linked orientation in which the AGVs are linked end to end in a predetermined sequence. The system further includes centralized control circuit configured to receive a plurality of merchandise orders for delivery, identify a geographic neighborhood having orders, identify AGVs for delivery in the neighborhood, instruct the AGVs to form the first linked orientation, and instruct navigation of the AGV chain to an initial detachment location in the neighborhood. The AGVs detach in the neighborhood, complete their individual deliveries, and navigate to a predetermined relinking location in the neighborhood.
    Type: Application
    Filed: February 22, 2019
    Publication date: September 5, 2019
    Inventors: Donald R. High, Robert L. Cantrell, Michael D. Atchley, Brian G. McHale, John J. O'Brien, Nathan G. Jones
  • Patent number: 10399775
    Abstract: Generally speaking, pursuant to various embodiments, systems, apparatuses, and methods are provided herein useful for autonomously delivering lockers. In some embodiments, a system comprises a carrier vehicle, the carrier vehicle comprising a storage area, a docking station including a plurality of storage docks, each of the plurality of storage docks configured to secure at least one locker, wherein the docking station is located within the storage area, and a retrieval point, a plurality of lockers each configured to house at least one product, a delivery vehicle, the delivery vehicle comprising a delivery dock, wherein the delivery dock is configured to receive, at the retrieval point, at least one locker, and a propulsion mechanism, wherein the propulsion mechanism propels the delivery vehicle, and a control circuit, the control circuit configured to identify, from the plurality of lockers, a selected locker, and cause the selected locker to move to the retrieval point.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 3, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, David C. Winkle, Michael D. Atchley, Brian G. McHale, Nicholas Ray Antel, John J. O'Brien, Todd D. Mattingly, Bruce W. Wilkinson
  • Publication number: 20190263644
    Abstract: A central computer system directs a motorized transport unit through a retail shopping facility to a particular mobile item container having at least one item disposed therein, that item being designated for return to a particular department within the retail shopping facility such that this item can then again be presented for sale. After causing that motorized transport unit to physically attach to this mobile item container, the central computer system then directs that motorized transport unit through the retail shopping facility with the attached particular mobile item container to the one or more departments to which the item or items are to be so returned.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 29, 2019
    Inventors: Michael D. Atchley, David C. Winkle, Donald R. High
  • Publication number: 20190266559
    Abstract: In some embodiments, apparatuses and methods are provided herein useful to managing associate delivery. In some embodiments, there is provided a system for managing associate delivery at an end of shift including one or more cameras configured to periodically capture images of a plurality of associates; an associate interface configured to periodically provide locations of the plurality of associates; one or more storage sensors configured to provide storage sensor data used to determine available capacity of a storage area of each of a plurality of personal vehicles; and a control circuit configured to receive a work schedule; determine whereabouts of a corresponding associate; determine that the corresponding associate has completed a work task; determine whether a personal vehicle has storage area capable of storing one or more retail products; and determine whether the corresponding associate is a candidate to deliver the one or more retail products.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 29, 2019
    Inventors: Donald R. High, Robert L. Cantrell, John F. Simon, Michael D. Atchley
  • Publication number: 20190256334
    Abstract: Systems, apparatuses, and methods for determining item availability are provided. A computer implemented method for determining item availability in a shopping space comprising: receiving a request for an item for purchase from a customer, querying an inventory database to determine whether the item for purchase is in stock, in an event that the item for purchase is not in stock according to the inventory database: determining an out of stock response to present to the customer, in an event that the item for purchase is in stock according the inventory database: instructing a motorized transport unit to travel to a display space in the shopping space corresponding to the item for the purchase, determining whether the item is available in the display space based on information captured by one or more sensors of the motorized transport unit, and in an event that the item for purchase is not available in the display space: determining an item unavailable response to present to the customer.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Donald R. High, Michael D. Atchley, David C. Winkle
  • Publication number: 20190238214
    Abstract: Autonomous vehicles such as UAVs or cars provide network access points. User devices connect to the network access points and network access is monitored. User location data is also monitored. A profile of the user is generated from the gathered data. Advertisements are selected based on a profile of the user and the current location of the user. The autonomous vehicles may be distributed geographically to provide a network access to a geographic area. In response to detecting that a user device is moving out of a coverage area of an autonomous vehicle, nearby autonomous vehicles are identified. If the user device is in the coverage area of a nearby autonomous vehicle, the network connection to the user device is transferred to that vehicle.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 1, 2019
    Inventors: Donald R. High, Michael D. Atchley, John J. O'Brien
  • Publication number: 20190227541
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227554
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227542
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10358326
    Abstract: A plurality of lockers can each serve to contain items that have been ordered by a customer. By one approach these lockers are stored in a locker storage facility. By one approach these lockers are configured such that a motorized transport unit can physically engage the locker in order to move the locker. So configured, a central computer system can be configured to select a particular motorized transport unit to retrieve a particular locker that has been previously associated with a particular entity (such as a particular customer or their designated agent) and to make that locker available to that particular entity such that the latter can retrieve their item or items from that locker.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: July 23, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Michael D. Atchley, Donald R. High, David C. Winkle
  • Patent number: 10360528
    Abstract: In some embodiments, apparatuses, systems and methods are provided herein useful to assist in unloading products. Some embodiments provide a product unloading assistance system, comprising: a control circuit; a graphical display; a camera; and a memory with the control circuit performing the steps of: receive an image from the camera comprising at least a portion of a product delivery vehicle and one or more reference points on the delivery vehicle; obtain an identifier of a load in the delivery vehicle to be unloaded; and cause the graphical display to display, in accordance with an orientation of the camera relative to the delivery vehicle based on the one or more reference points, 3D graphical representations of multiple different packaged products as loaded into the delivery vehicle and their orientation relative to each other as they are positioned within the delivery vehicle.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: July 23, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, David C. Winkle, Michael D. Atchley
  • Patent number: 10360533
    Abstract: A product display surface supports at least one product being offered for sale thereon. This product display surface has a weight-sensitive RFID tag associated therewith. This tag has at least one transmission element that moves with respect to a remaining portion of the tag as a function of weight being supported by the product display surface. So configured, the weight-sensitive RFID tag transmits at a first level when there are no products (or only a few products) on the product display surface and at a second level when there are at least a predetermined number of products on the product display surface, the first transmission level being less than the second transmission level. An RFID-tag reader reads the weight-sensitive RFID tag and a control circuit determines when the first product display surface lacks sufficient displayed inventory as a function, at least in part, of the weight-sensitive RFID tag's transmission strength.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: July 23, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Michael D. Atchley, John P. Thompson
  • Publication number: 20190218081
    Abstract: System, method, and apparatus for providing transport are provided. A system for providing passenger transport, comprises a plurality of motorized transport units each comprising a coupler for mechanically coupling to a passenger carrier, and a central computer system communicatively coupled to the plurality of motorized transport units. The central computer system being configured to: receive a ride request from a user, select a motorized transport unit from the plurality of motorized transport units, instruct the motorized transport unit to travel to couple to a passenger carrier associated from the user, determine a route based on user route preference, and instruct the motorized transport unit coupled to the passenger carrier to transport the user based on the route.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Inventors: Donald R. High, Michael D. Atchley, David C. Winkle, Robert C. Taylor, Eric E. Welch
  • Patent number: 10351400
    Abstract: Methods and apparatuses are provided, some apparatuses comprise: a location controller separate from a motorized transport unit, comprising: a transceiver configured to receive communications from the motorized transport unit; a control circuit; a memory storing computer instructions that when executed by the control circuit cause the control circuit to perform the steps of: obtain, from the communications, a unique light source identifier of a light source detected by the motorized transport unit, and relative distance information determined by the motorized transport unit through an optical measurement; process the at least one unique light source identifier and the relative distance information relative to a mapping of the shopping facility; and determine, in response to the processing, a location of the motorized transport unit within the shopping facility as a function of the at least one unique light source identifier and the relative distance information.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: July 16, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Donald R. High, Michael D. Atchley, Brian G. McHale, Robert C. Taylor, David C. Winkle
  • Publication number: 20190210725
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: control the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20190213703
    Abstract: In some embodiments, apparatuses and methods are provided herein useful to identifying and evaluating an unidentified autonomous vehicle (AV) during a retail product delivery. In some embodiments, there is provided a system for identifying and evaluating an unidentified AV including a first identified AV configured to transport one or more retail products comprising: a plurality of sensors configured to provide sensor data used to determine patterns of movement of AVs over a time period; and an AV control circuit configured to: receive the sensor data; determine one or more patterns of movement of an unidentified AV based on the sensor data; determine whether the one or more patterns of movement of the unidentified AV is inconsistent with one or more sets of expected patterns of movement of the plurality of identified AVs; and identify that the unidentified AV is not associated with a retail store.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 11, 2019
    Inventors: David C. Winkle, Nathan G. Jones, Michael D. Atchley
  • Publication number: 20190210849
    Abstract: Apparatuses, components and methods are provided herein useful to provide assistance to customers and/or workers in a shopping facility. In some embodiments, a shopping facility personal assistance system comprises: a plurality of motorized transport units located in and configured to move through a shopping facility space; a plurality of user interface units, each corresponding to a respective motorized transport unit during use of the respective motorized transport unit; and a central computer system having a network interface such that the central computer system wirelessly communicates with one or both of the plurality of motorized transport units and the plurality of user interface units, wherein the central computer system is configured to control movement of the plurality of motorized transport units through the shopping facility space based at least on inputs from the plurality of user interface units.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 11, 2019
    Inventors: Donald R. High, Michael D. Atchley, Shuvro Chakrobartty, Karl Kay, Brian G. McHale, Robert C. Taylor, John P. Thompson, Eric E. Welch, David C. Winkle