Patents by Inventor Michael J. Ellsworth, Jr.

Michael J. Ellsworth, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10024606
    Abstract: Methods of fabricating cooling apparatuses are provided, which include providing a thermal transfer structure configured to couple to and cool one or more electronic components. The thermal transfer structure includes a thermal spreader, and at least one coolant-carrying tube coupled to the thermal spreader. The coolant-carrying tube(s) includes multiple tube lengths disposed substantially in a common plane, and an out-of-plane tube bend. The out-of-plane tube bend is couples in fluid communication first and second tube lengths of the multiple tube lengths, and extends out-of-plane from the multiple tube lengths disposed in the common plane. The first and second tube lengths may be spaced apart, with a third tube length disposed between them, and the coolant-carrying tube(s) further includes an in-plane tube bend which couples in fluid communication the third tube length and a fourth tube length of the multiple tube lengths.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: July 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amilcar R. Arvelo, Mark A. Brandon, Levi A. Campbell, Michael J. Ellsworth, Jr., Randall G. Kemink, Eric J. McKeever
  • Patent number: 10006571
    Abstract: Conduit connectors for liquid manifolds and methods of fabrication are provided. In one embodiment, a conduit connector is integrated, at least in part, within a liquid manifold, and includes a conduit-receiving opening or socket and at least one releasable retention component. The conduit-receiving opening is disposed within the liquid manifold and in fluid communication with at least one liquid-carrying channel of the liquid manifold. The releasable retention component(s) is selectively operative to threadlessly secure in a fluid-tight manner a conduit within the conduit-receiving opening in fluid communication with the at least one liquid-carrying channel of the liquid manifold to facilitate flow of liquid through the liquid-carrying channel(s), or to release the conduit from the conduit-receiving opening of the conduit connector. The releasable retention component(s) resides at least partially within the liquid manifold when operatively holding the conduit within the conduit-receiving opening.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: June 26, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Brunschwiler, Evan G. Colgan, Michael J. Ellsworth, Jr., Gerd Schlottig
  • Publication number: 20180149294
    Abstract: Conduit connectors for liquid manifolds and methods of fabrication are provided. In one embodiment, a conduit connector is recessed, at least in part, within a liquid manifold, and includes a conduit-receiving opening or socket and at least one releasable retention component. The conduit-receiving opening is disposed within the liquid manifold and in fluid communication with at least one liquid-carrying channel of the liquid manifold. The releasable retention component(s) is selectively operative to threadlessly secure in a fluid-tight manner a conduit within the conduit-receiving opening in fluid communication with the at least one liquid-carrying channel of the liquid manifold to facilitate flow of liquid through the liquid-carrying channel(s), or to release the conduit from the conduit-receiving opening of the conduit connector. The releasable retention component(s) resides at least partially within the liquid manifold when operatively holding the conduit within the conduit-receiving opening.
    Type: Application
    Filed: January 25, 2018
    Publication date: May 31, 2018
    Inventors: Thomas J. BRUNSCHWILER, Evan G. COLGAN, Michael J. ELLSWORTH, JR., Gerd SCHLOTTIG
  • Publication number: 20180107848
    Abstract: Tamper-proof electronic packages and fabrication methods are provided including an enclosure enclosing, at least in part, at least one electronic component within a secure volume, a two-phase dielectric fluid within the secure volume, and a tamper-respondent detector. The tamper-respondent detector monitors, at least in part, temperature and pressure of the two-phase dielectric fluid. In operation, the two-phase dielectric fluid deviates from an established saturation line of the two-phase dielectric fluid within the secure volume with an intrusion event into the secure volume, and the tamper-respondent detector detects, from the monitoring of the temperature and pressure of the two-phase dielectric fluid, the deviation from the established saturation line, and thereby occurrence of the intrusion event.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 19, 2018
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR.
  • Patent number: 9949412
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Publication number: 20180100608
    Abstract: Formed hose configurations are provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.
    Type: Application
    Filed: December 7, 2017
    Publication date: April 12, 2018
    Inventors: Michael J. ELLSWORTH, JR., Prabjit Singh
  • Publication number: 20180082926
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 22, 2018
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20180077824
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Application
    Filed: November 21, 2017
    Publication date: March 15, 2018
    Inventors: Levi A. CAMPBELL, Michael J. ELLSWORTH, JR., Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9904811
    Abstract: Tamper-proof electronic packages and fabrication methods are provided including an enclosure enclosing, at least in part, at least one electronic component within a secure volume, a two-phase dielectric fluid within the secure volume, and a tamper-respondent detector. The tamper-respondent detector monitors, at least in part, temperature and pressure of the two-phase dielectric fluid. In operation, the two-phase dielectric fluid deviates from an established saturation line of the two-phase dielectric fluid within the secure volume with an intrusion event into the secure volume, and the tamper-respondent detector detects, from the monitoring of the temperature and pressure of the two-phase dielectric fluid, the deviation from the established saturation line, and thereby occurrence of the intrusion event.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: February 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr.
  • Patent number: 9890878
    Abstract: Formed hose configurations are provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: February 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael J. Ellsworth, Jr., Prabjit Singh
  • Patent number: 9865522
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9811097
    Abstract: A system and computer program product are provided for controlling liquid-cooled electronics, which includes measuring a first set point temperature, Ta, wherein the Ta is based on a dew point temperature, Tdp of a computer room. A second set point temperature, Tb, is measured, wherein the Tb is based on a facility chilled liquid inlet temperature, Tci, and a rack power, Prack, of an electronics rack. A Modular Cooling Unit (MCU) set point temperature, Tsp, is selected. The Tsp is the higher value of said Ta and said Tb. Responsive to the selected Tsp, a control valve is regulated. The control valve controls a flow of liquid that passes through a heat exchanger.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: November 7, 2017
    Assignee: DARPA
    Inventors: Ravi K. Arimilli, Michael J. Ellsworth, Jr., Edward J. Seminaro
  • Publication number: 20170316228
    Abstract: Tamper-proof electronic packages and fabrication methods are provided including an enclosure enclosing, at least in part, at least one electronic component within a secure volume, a two-phase dielectric fluid within the secure volume, and a tamper-respondent detector. The tamper-respondent detector monitors, at least in part, temperature and pressure of the two-phase dielectric fluid. In operation, the two-phase dielectric fluid deviates from an established saturation line of the two-phase dielectric fluid within the secure volume with an intrusion event into the secure volume, and the tamper-respondent detector detects, from the monitoring of the temperature and pressure of the two-phase dielectric fluid, the deviation from the established saturation line, and thereby occurrence of the intrusion event.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR.
  • Publication number: 20170303429
    Abstract: Electronics cooling assemblies are provided which include an air-cooled heat sink, an auxiliary air-moving device, and an airflow-blocking mechanism. The heat sink couples to one or more heat-generating electronic components, and dissipates heat from the electronic component(s) to a cooling airflow passing across the heat sink. The auxiliary air-moving device provides, when active, an increased flow rate of the cooling airflow across the heat sink. The airflow-blocking mechanism toggles between a passive airflow position and an active airflow position. In the passive airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the heat sink without passing through the air-moving device, and in the active airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the auxiliary air-moving device.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 19, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR.
  • Patent number: 9795055
    Abstract: Electronics cooling assemblies are provided which include an air-cooled heat sink, an auxiliary air-moving device, and an airflow-blocking mechanism. The heat sink couples to one or more heat-generating electronic components, and dissipates heat from the electronic component(s) to a cooling airflow passing across the heat sink. The auxiliary air-moving device provides, when active, an increased flow rate of the cooling airflow across the heat sink. The airflow-blocking mechanism toggles between a passive airflow position and an active airflow position. In the passive airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the heat sink without passing through the air-moving device, and in the active airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the auxiliary air-moving device.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr.
  • Patent number: 9761508
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9763357
    Abstract: Methods of fabricating cooling apparatuses with coolant filters are provided which facilitate heat transfer from an electronic component(s). The method includes providing a cooling apparatus which includes a liquid-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a region of reduced cross-sectional coolant flow area. The heat sink includes a coolant inlet and outlet in fluid communication with the compartment, and the region of reduced cross-sectional coolant flow area provides an increased effective heat transfer coefficient between a main heat transfer surface of the conductive structure and the coolant. A coolant loop is also provided coupled to the coolant inlet and outlet to facilitate flow of coolant through the coolant-carrying compartment, and a coolant filter positioned to filter contaminants from the coolant passing through the heat sink.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9746109
    Abstract: Fabrication of formed hoses is provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael J. Ellsworth, Jr., Prabjit Singh
  • Patent number: 9750159
    Abstract: Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s).
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9733148
    Abstract: Embodiments of the present invention provide moisture measuring systems and methods. According to one embodiment of the present invention, a sealable compartment is used in which a specimen containing liquid can be inserted, such that all of the specimen is contained within the compartment. The relative humidity in the compartment is measured over a duration of time, which can be used to calculate the amount of liquid leaked by the specimen. Embodiments of the present invention can be utilized, for example, to calculate the leakage rate of water-carrying hardware of a cooling system, without having to create a membrane or other isolated sample of materials.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 15, 2017
    Assignee: International Business Machines Corporation
    Inventors: Michael G. Betro, Michael J. Ellsworth, Jr., Enrico A. Romano, Prabjit Singh, Jing Zhang