Patents by Inventor Michael J. Ellsworth, Jr.

Michael J. Ellsworth, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170229377
    Abstract: Embodiments of the present invention provide efficient and cost-effective systems for a lidded electronic device. The lidded electronic device includes an electronic module including an integrated circuit chip built on a substrate. The lidded electronic device also includes a module lid having a heat transferring feature, which extends above the top surface of the module lid. A manifold structure can be placed over the top surface of the module lid using a variety of techniques.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Michael J. Ellsworth, JR., Allan C. VanDeventer, Jason T. Wertz
  • Patent number: 9687943
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9686889
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9686891
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9661784
    Abstract: A coolant-cooled electronic module is provided which includes a multi-component assembly and a module lid with openings aligned over respective electronic components. Thermally conductive elements are disposed within the openings, each including opposite coolant-cooled and conduction surfaces, with the conduction surface being thermally coupled to the respective electronic component. A manifold assembly disposed over the module lid includes inner and outer manifold elements, with the inner element configured to facilitate flow of coolant onto the coolant-cooled surfaces. The outer manifold element is disposed over the inner manifold element and coupled to the module lid, with the inner and outer manifold elements defining a coolant supply manifold, and the outer manifold element and module lid defining a coolant return manifold. The coolant supply openings are in fluid communication with the coolant supply manifold, and the coolant exhaust channels are in fluid communication with the coolant return manifold.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amilcar R. Arvelo, Levi A. Campbell, Michael J. Ellsworth, Jr., Eric J. McKeever
  • Publication number: 20170127565
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20170127576
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Application
    Filed: June 7, 2016
    Publication date: May 4, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9623520
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9629286
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 18, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9622379
    Abstract: Cooling apparatuses and methods of fabrication are provided which facilitate immersion-cooling of an electronic component(s). The cooling apparatus includes a drawer-level enclosure sized to reside within an electronics rack. The drawer-level enclosure includes a compartment which accommodates one or more electronic components to be cooled. A dielectric fluid is disposed within the compartment. The dielectric fluid includes a liquid dielectric which at least partially immerses the electronic component(s) within the compartment(s). A hinged, liquid-cooled heat sink is also disposed within the compartment of the enclosure. The heat sink operatively facilitates cooling the one or more electronic components via the dielectric fluid within the compartment, and is rotatable between an operational position overlying the electronic component(s), and a service position which allows access to the electronic component(s).
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9591787
    Abstract: Cooling apparatuses and coolant-cooled electronic assemblies are provided which include a thermal transfer structure configured to couple to an electronics card which operatively inserts into an electronic system. The thermal transfer structure includes a clamping structure movable between opened and clamped positions. A coolant-cooled structure, which is associated with the electronic system within which the electronics card is operatively inserted, resides between the electronics card and, at least partially, the clamping structure with insertion of the electronics card into the electronic system.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: March 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amilcar R. Arvelo, Mark A. Brandon, Levi A. Campbell, Tan D. Doan, Michael J. Ellsworth, Jr., Randall G. Kemink, Eric J. McKeever
  • Publication number: 20170043437
    Abstract: A method of fabricating a liquid-cooled heat sink assembly, including: providing a heat transfer element including a heat transfer base having opposite first and second sides, and a plurality of thermally conductive fins extending from the first side of the heat transfer base, the second side of the heat transfer base to couple to a component(s) to be cooled; providing a coolant-carrying structure including a coolant-carrying base and a coolant-carrying compartment through which liquid coolant flows, the coolant-carrying base including a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins of the heat sink base to extend through; and attaching the heat transfer element and coolant-carrying structure together with the plurality of thermally conductive fins extending through the fin-receiving openings in the coolant-carrying base into the coolant-carrying compartment.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 16, 2017
    Inventors: Dylan J. BODAY, Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS, Prabjit SINGH, Jason T. WERTZ
  • Publication number: 20170049010
    Abstract: A method of providing a cooling apparatus for cooling a heat-dissipating component(s) of an electronics enclosure includes: providing a thermal conductor to couple to the heat-dissipating component(s), the thermal conductor including a first conductor portion coupled to the heat-dissipating component, and a second conductor portion to position along an air inlet side of the electronics enclosure, so that in operation, the first conductor portion transfers heat from the component(s) to the second conductor portion; coupling at least one air-cooled heat sink to the second conductor portion to facilitate transfer of heat to airflow ingressing into the enclosure; providing at least one thermoelectric device coupled to the first or second conductor portion to facilitate providing active auxiliary cooling to the thermal conductor; and providing a controller to control operation of the thermoelectric device(s) and to selectively switch operation of the cooling apparatus between active and passive cooling modes.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 16, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20170045300
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a heat transfer element including a heat transfer base with opposite first and second sides and a plurality of thermally conductive fins extending from the first side, and with the second side of the heat transfer base to couple to a component(s) to be cooled. The heat sink assembly further includes a coolant-carrying structure attached to the heat transfer element. The coolant-carrying structure includes a coolant-carrying base, and a coolant-carrying compartment through which liquid coolant flows. The coolant-carrying base includes a plurality of fin-receiving openings sized and positioned for the plurality of thermally conductive fins to extend therethrough. The plurality of thermally conductive fins extend into the coolant-carrying compartment through which the liquid coolant flows. In one or more embodiments, the heat transfer element is a metal structure and the coolant-carrying structure is a plastic structure.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 16, 2017
    Inventors: Dylan J. BODAY, Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS, Prabjit SINGH, Jason T. WERTZ
  • Patent number: 9562824
    Abstract: Embodiments of the present invention provide moisture measuring systems and methods. According to one embodiment of the present invention, a sealable compartment is used in which a specimen containing liquid can be inserted, such that all of the specimen is contained within the compartment. The relative humidity in the compartment is measured over a duration of time, which can be used to calculate the amount of liquid leaked by the specimen. Embodiments of the present invention can be utilized, for example, to calculate the leakage rate of water-carrying hardware of a cooling system, without having to create a membrane or other isolated sample of materials.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Michael G. Betro, Michael J. Ellsworth, Jr., Enrico A. Romano, Prabjit Singh, Jing Zhang
  • Publication number: 20170013746
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Application
    Filed: July 6, 2015
    Publication date: January 12, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, Jr., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20170013739
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 12, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160363243
    Abstract: Tapering couplers and coupling methods for connecting fluid flow components are provided. In one embodiment, the tapering coupler includes a housing with a first opening and a second opening in fluid communication through the housing. The first opening is sized for a first fluid flow component to couple to the housing, and the second opening for a second fluid flow component. The first and second fluid flow components include first and second fluid-carrying channels of different diameter, with the first fluid-carrying channel having a first channel diameter that is larger than the second channel diameter of the second fluid-carrying channel. A tapering element is associated with the housing and extends into the first fluid-carrying channel. The tapering element includes a tapering fluid-carrying channel which tapers in a direction back towards the housing, for instance, from about the first channel diameter to about the second channel diameter.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 15, 2016
    Inventors: Amilcar R. ARVELO, Michael J. ELLSWORTH, JR., Eric J. McKEEVER
  • Publication number: 20160341342
    Abstract: Coupling assemblies for connecting fluid-carrying components are provided. The coupling assemblies include, for instance: a socket fitting with a first opening and a second opening in fluid communication through the fitting, the first opening being sized to accommodate a first fluid-carrying component, and the second opening being sized to accommodate a second fluid-carrying component; a sleeve, the sleeve encircling the socket fitting and being rotatable relative to the fitting, and the sleeve including a first locking feature; and a second locking feature associated with one of the fluid-carrying components. The second locking feature is positioned and sized to engage the first locking feature of the sleeve when the one fluid-carrying component is inserted into the socket fitting. Once engaged, rotating of the sleeve locks the first and second locking features together to secure the one fluid-carrying component to the socket fitting.
    Type: Application
    Filed: September 7, 2015
    Publication date: November 24, 2016
    Inventors: Amilcar R. ARVELO, Alan F. BENNER, Michael J. ELLSWORTH, JR., Eric J. McKEEVER
  • Publication number: 20160345466
    Abstract: Coupling assemblies for connecting fluid-carrying components are provided. The coupling assemblies include, for instance: a socket fitting with a first opening and a second opening in fluid communication through the fitting, the first opening being sized to accommodate a first fluid-carrying component, and the second opening being sized to accommodate a second fluid-carrying component; a sleeve, the sleeve encircling the socket fitting and being rotatable relative to the fitting, and the sleeve including a first locking feature; and a second locking feature associated with one of the fluid-carrying components. The second locking feature is positioned and sized to engage the first locking feature of the sleeve when the one fluid-carrying component is inserted into the socket fitting. Once engaged, rotating of the sleeve locks the first and second locking features together to secure the one fluid-carrying component to the socket fitting.
    Type: Application
    Filed: May 20, 2015
    Publication date: November 24, 2016
    Inventors: Amilcar R. ARVELO, Alan F. BENNER, Michael J. ELLSWORTH, JR., Eric J. McKEEVER