Patents by Inventor Michael Sadd

Michael Sadd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8498140
    Abstract: Embodiments relate to a two-transistor (2T) floating-body cell (FBC) for embedded-DRAM applications. Further embodiments pertain to a floating-body/gate cell (FBGC), which yields reduction in power dissipation, in addition to better signal margin, longer data retention, and higher memory density.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: July 30, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jerry G. Fossum, Leo Mathew, Michael Sadd, Vishal P. Trivedi
  • Patent number: 8351276
    Abstract: A method includes erasing bits and identifying bits that have been over-erased by the erasing. A first subset of the bits that have been over-erased are soft programmed. The results of soft programming the first subset of bits is measured. An initial voltage condition from a plurality of possible voltage conditions based on the results from soft programming the first subset of bits is selected. A second subset of bits that have been over-erased are soft programmed. The soft programming applies the initial voltage condition to the bits in the second subset of bits. The second subset comprises bits that are still over-erased when the step of selecting occurs. The result is that the soft programming for the second subset may begin at a more optimum point for quickly achieving the needed soft programming to bring all of the bits within the desired erase condition.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: January 8, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jon S. Choy, Chen He, Michael A. Sadd
  • Publication number: 20120241909
    Abstract: A process and device structure is provided for increasing capacitance density of a capacitor structure. A sandwich capacitor is provided in which a bottom silicon-containing conductor plate is formed with holes or cavities, upon which an oxide layer and a top silicon-containing layer conductor is formed. The holes or cavities provide additional capacitive area, thereby increasing capacitance per footprint area of the capacitor structure. The holes can form, for example, a line structure or a waffle-like structure in the bottom conductor plate. Etching techniques used to form the holes in the bottom conductor plate can also result in side wall tapering of the holes, thereby increasing the surface area of the silicon-containing layer defined by the holes. In addition, depth of holes can be adjusted through timed etching to further adjust capacitive area.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Inventors: Tushar P. Merchant, Michael A. Sadd
  • Publication number: 20120113714
    Abstract: A method is provided for programming a multi-state flash memory having a plurality of memory cells. A first programming pulse is provided to the flash array; determining a threshold voltage distribution for the plurality of memory cells after providing the first programming pulse. The plurality of memory cells is categorized into at least two bins based on a threshold voltage of each memory cell of the plurality of memory cells. A first voltage is selected for a second programming pulse for programming a first bin of memory cells of the at least two bins, the first voltage based on both a threshold voltage of the first bin and a first target threshold voltage. A second voltage is selected for a third programming pulse for programming a second bin of memory cells of the at least two bins, the second voltage based on both the threshold voltage of the second bin and on a second target threshold voltage.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Inventors: JON S. CHOY, Chen He, Michael A. Sadd
  • Publication number: 20120014179
    Abstract: A method includes erasing bits and identifying bits that have been over-erased by the erasing. A first subset of the bits that have been over-erased are soft programmed. The results of soft programming the first subset of bits is measured. An initial voltage condition from a plurality of possible voltage conditions based on the results from soft programming the first subset of bits is selected. A second subset of bits that have been over-erased are soft programmed. The soft programming applies the initial voltage condition to the bits in the second subset of bits. The second subset comprises bits that are still over-erased when the step of selecting occurs. The result is that the soft programming for the second subset may begin at a more optimum point for quickly achieving the needed soft programming to bring all of the bits within the desired erase condition.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Inventors: Jon S. Choy, Chen He, Michael A. Sadd
  • Patent number: 7906805
    Abstract: An edgeless one-transistor flash memory array includes transistors that have two polysilicon gate layers that overlay an active region. The bottom polysilicon gate layer is electrically isolated. The memory is configured such that current passes from drain to source under the bottom polysilicon layer, such that it does not approach a field oxide region. An edgeless two-transistor programmable memory includes memory cells that have two active devices. Two polysilicon gate layers overlay two active regions and are shared between the two active devices. One of the devices is used to program and erase the cell while the other used as a programmable switch in a programmable logic device. The bottom polysilicon gate layer is electrically isolated. The memory is configured such that current passes from drain to source under the bottom polysilicon layer, such that it does not approach a field oxide region.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 15, 2011
    Assignee: Actel Corporation
    Inventors: Michael Sadd, Fethi Dhaoui, John McCollum, Richard Chan
  • Publication number: 20110024821
    Abstract: A flash memory cell includes a p-channel flash transistor having a source, a drain, a floating gate, and a control gate, an n-channel flash transistor having a source, a drain coupled to the drain of the p-channel flash transistor, a floating gate, and a control gate, a switch transistor having a gate coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source, and a drain, and an n-channel assist transistor having a drain coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source coupled to a fixed potential, and a gate.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Zhigang Wang, Fethi Dhaoui, Michael Sadd, John McCollum, Frank Hawley
  • Publication number: 20100329043
    Abstract: Embodiments relate to a two-transistor (2T) floating-body cell (FBC) for embedded-DRAM applications. Further embodiments pertain to a floating-body/gate cell (FBGC), which yields reduction in power dissipation, in addition to better signal margin, longer data retention, and higher memory density.
    Type: Application
    Filed: October 1, 2008
    Publication date: December 30, 2010
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Jerry G. Fossum, Leo Mathew, Michael Sadd, Vishal P. Trivedi
  • Patent number: 7839681
    Abstract: A flash memory cell includes a p-channel flash transistor having a source, a drain, a floating gate, and a control gate, an n-channel flash transistor having a source, a drain coupled to the drain of the p-channel flash transistor, a floating gate, and a control gate, a switch transistor having a gate coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source, and a drain, and an n-channel assist transistor having a drain coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source coupled to a fixed potential, and a gate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 23, 2010
    Assignee: Actel Corporation
    Inventors: Zhigang Wang, Fethi Dhaoui, Michael Sadd, John McCollum, Frank Hawley
  • Patent number: 7800164
    Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a semiconductor substrate, forming a plurality of discrete storage elements over the first dielectric layer, thermally oxidizing the plurality of discrete storage elements to form a second dielectrics over the plurality of discrete storage elements, and forming a gate electrode over the second dielectric layer, wherein a significant portion of the gate electrode is between pairs of the plurality of discrete storage elements. In one embodiment, portions of the gate electrode is in the spaces between the discrete storage elements and extends to more than half of the depth of the spaces.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: September 21, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ramachandran Muralidhar, Rajesh A. Rao, Michael A. Sadd, Bruce E. White
  • Publication number: 20100149873
    Abstract: A flash memory cell includes a p-channel flash transistor having a source, a drain, a floating gate, and a control gate, an n-channel flash transistor having a source, a drain coupled to the drain of the p-channel flash transistor, a floating gate, and a control gate, a switch transistor having a gate coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source, and a drain, and an n-channel assist transistor having a drain coupled to the drains of the p-channel flash transistor and the n-channel flash transistor, a source coupled to a fixed potential, and a gate.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: ACTEL CORPORATION
    Inventors: Zhigang Wang, Fethi Dhaoui, Michael Sadd, John McCollum, Frank Hawley
  • Patent number: 7732278
    Abstract: A split gate memory cell has a select gate, a control gate, and a charge storage structure. The select gate includes a first portion located over the control gate and a second portion not located over the control gate. In one example, the first portion of the select gate has a sidewall aligned with a sidewall of the control gate and aligned with a sidewall of the charge storage structure. In one example, the control gate has a p-type conductivity. In one example, the gate can be programmed by a hot carrier injection operation and can be erased by a tunneling operation.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: June 8, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Michael A. Sadd, Robert F. Steimle
  • Patent number: 7692972
    Abstract: A split-gate memory cell, includes an n-channel split-gate non-volatile memory transistor having a source, a drain, a select gate over a thin oxide, and a control gate over a non-volatile gate material and separated from the select gate by a gap. A p-channel pull-up transistor has a drain coupled to the drain of the split-gate non-volatile memory transistor, a source coupled to a bit line, and a gate. A switch transistor has first and second source/drain diffusions, and a gate coupled to the drains of the split-gate non-volatile memory transistor and the p-channel pull-up transistor. An inverter has an input coupled to the second source/drain diffusion of the switch transistor, and an output. A p-channel level-restoring transistor has a source coupled to a supply potential, a drain coupled to the first source/drain diffusion of the switch transistor and a gate coupled to the output of the inverter.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 6, 2010
    Assignee: Actel Corporation
    Inventors: Michael Sadd, Fethi Dhaoui, George Wang, John McCollum
  • Patent number: 7679125
    Abstract: A method of making a semiconductor device includes providing a first wafer and providing a second wafer having a first side and a second side, the second wafer including a semiconductor substrate, a storage layer, and a layer of gate material. The storage layer may be located between the semiconductor structure and the layer of the gate material and the storage layer may be located closer to the first side of the second wafer than the semiconductor structure. The method further includes boding the first side of the second wafer to the first wafer. The method further includes removing a first portion of the semiconductor structure to leave a layer of the semiconductor structure after the bonding. The method further includes forming a transistor having a channel region, wherein at least a portion of the channel region is formed from the layer of the semiconductor structure.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: March 16, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Gowrishankar L. Chindalore, Thuy B. Dao, Michael A. Sadd
  • Publication number: 20100044768
    Abstract: An edgeless one-transistor flash memory array includes transistors that have two polysilicon gate layers that overlay an active region. The bottom polysilicon gate layer is electrically isolated. The memory is configured such that current passes from drain to source under the bottom polysilicon layer, such that it does not approach a field oxide region. An edgeless two-transistor programmable memory includes memory cells that have two active devices. Two polysilicon gate layers overlay two active regions and are shared between the two active devices. One of the devices is used to program and erase the cell while the other used as a programmable switch in a programmable logic device. The bottom polysilicon gate layer is electrically isolated. The memory is configured such that current passes from drain to source under the bottom polysilicon layer, such that it does not approach a field oxide region.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 25, 2010
    Inventors: Michael Sadd, Fethi Dhaoui, John McCollum, Richard Chan
  • Patent number: 7622349
    Abstract: A method is provided which includes forming a first gate overlying a major surface of an electronic device substrate and forming a second gate overlying and spaced apart from the first gate. The method further includes forming a charge storage structure horizontally adjacent to, and continuous along, the first gate and the second gate, wherein a major surface of the charge storage structure is substantially vertical to the major surface of the substrate.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: November 24, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael A. Sadd, Gowrishankar L. Chindalore, Cheong M. Hong
  • Patent number: 7619275
    Abstract: A process for forming an electronic device can include forming a trench within a substrate, wherein the trench includes a wall and a bottom. The process can also include including forming a portion of discontinuous storage elements that lie within the trench, and forming a first gate electrode within the trench after forming the discontinuous storage elements. At least one discontinuous storage element lies along the wall of the trench at an elevation between an upper surface of the first gate electrode and a primary surface of the substrate. The process can also include forming a second gate electrode overlying the first gate electrode and the primary surface of the substrate.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: November 17, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael A. Sadd, Ko-Min Chang, Gowrishankar L. Chindalore, Cheong M. Hong, Craig T. Swift
  • Patent number: 7582929
    Abstract: An electronic device can include discontinuous storage elements that lie within a trench. In one embodiment, the electronic device can include a substrate having a trench that includes a wall and a bottom. The electronic device can also include a portion of discontinuous storage elements that lie within the trench. The electronic device can also include a first gate electrode, wherein at least one discontinuous storage element lies along the wall of the trench at an elevation between and upper surface of the first gate electrode and a primary surface of the substrate. The electronic device can also include a second gate electrode overlying the first gate electrode and the primary surface of the substrate. In another embodiment, a conductive line can be electrically connected to one or more rows or columns of memory cells, and another conductive line can be more rows or more columns of memory cells.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: September 1, 2009
    Assignee: Freescale Semiconductor, Inc
    Inventors: Michael A. Sadd, Ko-Min Chang, Gowrishankar L. Chindalore, Cheong M. Hong, Craig T. Swift
  • Patent number: 7563681
    Abstract: A method for making a semiconductor device comprises providing a first wafer and providing a second wafer having a first side and a second side, the second wafer including a semiconductor structure, a first storage layer, and a layer of gate material, wherein the first storage layer is located between the semiconductor structure and the layer of gate material and closer to the first side of the second wafer than the semiconductor structure. The method further includes bonding the first side of the second wafer to the first wafer and cleaving away a first portion of the semiconductor structure to leave a layer of the semiconductor structure after the bonding. The method further includes forming a second storage layer over the layer of the semiconductor structure and forming a top gate over the second storage layer.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 21, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Thuy B. Dao, Michael A. Sadd
  • Publication number: 20090166712
    Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a semiconductor substrate, forming a plurality of discrete storage elements over the first dielectric layer, thermally oxidizing the plurality of discrete storage elements to form a second dielectrics over the plurality of discrete storage elements, and forming a gate electrode over the second dielectric layer, wherein a significant portion of the gate electrode is between pairs of the plurality of discrete storage elements. In one embodiment, portions of the gate electrode is in the spaces between the discrete storage elements and extends to more than half of the depth of the spaces.
    Type: Application
    Filed: March 4, 2009
    Publication date: July 2, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Ramachandran Muralidhar, Rajesh A. Rao, Michael A. Sadd, Bruce E. White