Patents by Inventor Michael Shawn Gray

Michael Shawn Gray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977123
    Abstract: A voltage sensor includes a drive-sense circuit (DSC) and a reference load. The DSC is operably coupled to a point along a wire that is proximate to a battery terminal. The wire connects the battery terminal to a load. The DSC is configured to generate a signal based on a reference signal that is reference signal is based on an estimate of a voltage at the point along the wire. The DSC is also configured to generate an output signal that corresponds to a difference between the signal and the reference signal and to tune the reference signal until the signal compares favorably to the voltage at the point along the wire. The DSC also is configured to determine the voltage at the point along the wire based on the tuned reference signal. The reference load is operably coupled to the DSC and the point along a wire.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: May 7, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Michael Shawn Gray, Timothy W. Markison, Shayne X. Short
  • Publication number: 20240143801
    Abstract: A method for execution by a vehicle computing system includes establishing a screen-to-screen (STS) communication link with a personal computing device. The method further includes detecting a requested operation of the personal computing device. The method further includes determining whether the requested operation is allowed based on one or more of: operational status of the vehicle, a type of the requested operation, and targeted vehicle occupant. The method further includes, when the requested operation is allowed, establishing one or more of: one or more inbound STS channels for inbound STS signals and one or more outbound STS channels for outbound STS signals. The method further includes facilitating the requested operation via the one or more of: the one or more inbound STS channels and the one or more outbound STS channels.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Timothy W. Markison
  • Publication number: 20240146836
    Abstract: A method for execution by a personal computing device includes detecting an incoming operation. The method further includes transmitting a notice of the incoming operation to a vehicle computing device via a screen-to-screen (STS) communication link. The method further includes receiving an accept message via the STS communication link from the vehicle computing device. The method further includes facilitating the incoming operation via one or more of: one or more inbound STS channels for inbound STS signals and one or more outbound STS channels for outbound STS signals.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Timothy W. Markison
  • Publication number: 20240133961
    Abstract: A voltage sensor includes a drive-sense circuit (DSC) and a reference load. The DSC is operably coupled to a point along a wire that is proximate to a battery terminal. The wire connects the battery terminal to a load. The DSC is configured to generate a signal based on a reference signal that is reference signal is based on an estimate of a voltage at the point along the wire. The DSC is also configured to generate an output signal that corresponds to a difference between the signal and the reference signal and to tune the reference signal until the signal compares favorably to the voltage at the point along the wire. The DSC also is configured to determine the voltage at the point along the wire based on the tuned reference signal. The reference load is operably coupled to the DSC and the point along a wire.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 25, 2024
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Michael Shawn Gray, Timothy W. Markison, Shayne X. Short, Ph.D.
  • Patent number: 11966526
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: April 23, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11947746
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: April 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20240103652
    Abstract: A touch screen display includes a plurality of electrodes configured to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component, a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes to generate a plurality of sensed signals, and a processing module. The processing module is configured to cause the touch screen display to receive the plurality of sensed signals. A stream of capacitance image data associated with the plurality of cross points is generated based on the plurality of sensed signals. The stream of capacitance image data is processed to detect a touchless gesture.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20240103672
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value; and processing the capacitance image data to determine a touchless indication proximal to the touch screen display based on a touchless indication threshold.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Patent number: 11934608
    Abstract: A touch screen display is operable to operate in a first mode during a first temporal period based on activating exactly one set of drive-sense circuits of a plurality of sets of drive-sense circuits to generate a corresponding one set of sensed signals during the first temporal period, and processing the corresponding one set of sensed signals to generate first proximal interaction data for the first temporal period. The touch screen display is operable to operate in a second mode during a second temporal period after the first temporal period based on activating more than one set of drive-sense circuits of the plurality of sets of drive-sense circuits to generate a corresponding more than one set of sensed signals during the second temporal period, and processing the set of sensed signals to generate second proximal interaction data for the second temporal period.
    Type: Grant
    Filed: May 15, 2023
    Date of Patent: March 19, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Patrick Troy Gray, Richard Stuart Seger, Jr.
  • Publication number: 20240085932
    Abstract: A drive-sense circuit module includes at least one regulated source circuit coupled to a load, and to a loop correction circuit. The regulated source circuit generates a drive signal, which has a regulated characteristic and a controlled characteristic. At least one reference circuit applies a reference signal to the loop correction circuit that establishes a reference value of the controlled characteristic. The loop correction circuit senses an effect of one or more load characteristics on a sensed value of the controlled characteristic of the drive signal and generates a comparison signal based on the sensed value and the reference value of the controlled characteristic. A regulation signal is generated based on the comparison signal and used to regulate the regulated characteristic of the drive signal.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Michael Shawn Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20240061540
    Abstract: A fingerprint imaging device incorporating a first plurality of electrodes, a second plurality of electrodes and drive-sense circuitry. The first plurality of electrodes and the second plurality of electrodes are separated by a dielectric material and arranged in a crossing pattern in a sensing area. In an embodiment, each of the drive-sense circuits is configured to drive a sensor signal on an electrode of the first plurality or second plurality of electrodes, the sensor signal including a drive signal component and a receive signal component. Each of the drive-sense circuits is further configured to generate, based on the receive signal component, a sensed signal representative of at least a first impedance of the electrode. For at least some of the drive-sense circuits, the sensed signal further represents a second impedance of the electrode in accordance with a drive signal component from a differing electrode.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 22, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Patrick Troy Gray, Richard Stuart Seger, JR.
  • Patent number: 11907450
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: February 20, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11899499
    Abstract: A device having a flexible touch screen display configured to display images in at least a first touch area and a second touch area. The first touch area is configured to rotate with respect to the second touch area along a folding axis. A first plurality of touch sensitive column and row electrodes are integrated into the first touch area and a second plurality of column and row electrodes are integrated into the second touch area of the flexible display. The device further includes a plurality of drive-sense circuits that drive sensor signals on the electrodes. A processing module senses, based on the sensor signals, an electrical characteristic of at least one row electrode and at least one column electrode of the first touch area or the second touch area and determines, based on the electrical characteristic, a proximal touch to at least one of the first touch area or the second touch area.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: February 13, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray
  • Patent number: 11899867
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating a stream of capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value within a temporal period; and processing the capacitance image data to determine a touchless gesture occurring within the temporal period.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: February 13, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Publication number: 20240048356
    Abstract: A method includes generating, by a transmit digital to analog circuit of a low voltage drive circuit (LVDC), analog outbound data. The analog outbound data includes a direct current (DC) component and an oscillating component at a first frequency. The method further includes generating, by an analog transmit encryption signal generator of a transmit encrypt module of the LVDC, an analog transmit encryption signal having at least one frequency component, multiplying, by a mixer of the transmit encrypt module, the analog outbound data with the analog transmit encryption signal to produce an encrypted transmit signal having frequency components that differ from the first frequency. The method further includes generating, by a power source circuit of a drive-sense circuit of the LVDC, the encrypted analog outbound data as an analog transmit signal of a bus signal based on analog inbound data.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 8, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Michael Shawn Gray, Timothy W. Markison
  • Patent number: 11875005
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value; and processing the capacitance image data to determine a touchless indication proximal to the touch screen display based on a touchless indication threshold.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: January 16, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Publication number: 20240010144
    Abstract: A sensor system is operable to: communicate a first ID signal at a first frequency between a first passenger restraint and a first sensor circuit through a body of a first user in a first vehicle chair; determine interaction with an interactable element corresponding to the first sensor circuit based on sensed signal data from a first sensor circuit indicating changes in electrical properties of an electrode of the first sensor circuit; determine the interaction is via the first user in the first vehicle chair when the sensed signal data indicates detection of the first frequency; and when the sensed signal data indicates detection of the first frequency, perform a first vehicle functionality of a set of vehicle functionalities based on configuration data corresponding to the first user.
    Type: Application
    Filed: May 16, 2023
    Publication date: January 11, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand
  • Publication number: 20240010145
    Abstract: A sensor system is operable to: communicate a first ID signal at a first frequency between a first perimeter sensor and a first sensor circuit through a body of a first user in a first vehicle chair, determine interaction with an interactable element corresponding to the first sensor circuit based on sensed signal data from a first sensor circuit indicating changes in electrical properties of an electrode of the first sensor circuit; determine the interaction is via the first user in the first vehicle chair when the sensed signal data indicates detection of the first frequency; and when the sensed signal data indicates detection of the first frequency, perform a first vehicle functionality of a set of vehicle functionalities based on configuration data corresponding to the first user.
    Type: Application
    Filed: May 16, 2023
    Publication date: January 11, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand
  • Publication number: 20240004602
    Abstract: An interactive device is operable to receive a first plurality of sensed signals during a first temporal period. The first plurality of sensed signals indicate a first plurality of changes in electrical characteristics of a set of electrodes of the plurality of electrodes. A first impedance pattern identifying a writing passive device is detected based on interpreting the first plurality of changes in the electrical characteristics of the set of electrodes during the first temporal period. The writing passive device is detected based on detecting the first impedance pattern. Written user notion data is detected based on detecting movement of the writing passive device in relation to the interactive display device during the first temporal period. The written user notation data is processed for display in accordance with at least one display setting corresponding to the writing passive device.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 4, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
  • Patent number: 11861082
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: January 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs