Patents by Inventor Michael Shawn Gray

Michael Shawn Gray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230087019
    Abstract: A force detection system includes first and second sets of pressure sensors, memory, and a processing module. The first set of pressure sensors are in an insole of a shoe and the second set of pressure sensors are in an outsole of a shoe. The processing module receives first data regarding the first set of pressure sensors and generates a first digital representation of the first data. The processing module also receives second data regarding the second set of pressure sensors and generates a second digital representation of the second data. The processing module also writes the first and second digital representations to the memory.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 23, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Richard Stuart Seger, JR., Timothy W. Markison, Kevin Joseph Derichs
  • Publication number: 20230086442
    Abstract: A fingerprint scanning device having a sensing area that includes a plurality of row electrodes and a plurality of column electrodes. The row electrodes and column electrodes are separated by a dielectric material and arranged in a crossing pattern in the sensing area. A plurality of drive-sense circuits drive sensor signals on the electrodes. In an embodiment, each of the drive-sense circuits is configured, when enabled, to drive a sensor signal on at least one electrode of the plurality of column electrodes or the plurality of row electrodes, the sensor signal including a drive signal component and a receive signal component. Each of the drive-sense circuits is further configured to generate, based on the receive signal component, a sensed signal representative of an impedance of the at least one electrode.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Patrick Troy Gray, Richard Stuart Seger, JR.
  • Publication number: 20230091560
    Abstract: A method includes transmitting, by a plurality of drive sense circuits of an interactive display device, a plurality of signals on a plurality of electrodes of the interactive display device. A writing passive device is identified based on a first plurality of changes detected in the electrical characteristics of the set of electrodes. Written user notion data is determined based on detecting movement of the writing passive device in relation to the interactive display device, and the written user notation data is displayed. An erasing passive device is identified based on a second plurality of changes detected in the electrical characteristics of the set of electrodes. Erased portions of the written user notation data is determined based on detecting movement of the erasing passive device in relation to the interactive display device, and the updated written user notation data is displayed based on no longer displaying the erased portions.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 23, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
  • Publication number: 20230071058
    Abstract: A method includes, for a first x-y position of a sensing grid, obtaining first sensed data. The method further includes, for a first sense data layer, determining whether the first sensed data compares favorably to a threshold for the first sense data layer. The method further includes, when the first sensed data compares favorably to the threshold for the first sense data layer; storing a first n-bit value and storing a second n-bit value when it does not. The method further includes, for a second sense data layer, determining whether the first sensed data compares favorably to a threshold for the second sense data layer. The method further includes, when the first sensed data compares favorably to the threshold for the second sense data layer; storing the first n-bit value and storing the second n-bit value when it does not. The method includes similar processing for a second x-y position.
    Type: Application
    Filed: October 27, 2022
    Publication date: March 9, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Gerald Dale Morrison, Michael Shawn Gray, Grant Howard McGibney
  • Patent number: 11592874
    Abstract: A device having a flexible touch screen display configured to display images in at least a first touch area and a second touch area. The first touch area is configured to rotate with respect to the second touch area along a folding axis. A first plurality of touch sensitive column electrodes are integrated into the first touch area, a second plurality of column electrodes are integrated into the second touch area of the flexible display, and a plurality of row electrodes are integrated into and extend across the first touch area and the second touch area. Also included are a plurality of drive-sense circuits that drive sensor signals on the electrodes.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 28, 2023
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray
  • Patent number: 11592915
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 28, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11592921
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 28, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20230039953
    Abstract: A device having a flexible touch screen display configured to display images in at least a first touch area and a second touch area. The first touch area is configured to rotate with respect to the second touch area along a folding axis. A first plurality of touch sensitive column electrodes are integrated into the first touch area, a second plurality of column electrodes are integrated into the second touch area of the flexible display, and a plurality of row electrodes are integrated into and extend across the first touch area and the second touch area. Also included are a plurality of drive-sense circuits that drive sensor signals on the electrodes.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 9, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray
  • Publication number: 20230041204
    Abstract: A method includes transmitting, by a plurality of drive sense circuits of a primary interactive display device, a plurality of signals on a plurality of electrodes of the primary interactive display device. At least one change in electrical characteristics of a set of electrodes is detected by a set of drive sense circuits during a temporal period. A stream of user notion data is determined by a processing module of the primary interactive display device based on interpreting the at least one change in the electrical characteristics of the set of electrodes during the temporal period. The stream of user notation data is displayed via a display of the primary interactive display device during the temporal period. The stream of user notation data is transmitted, via a network interface of the primary interactive display device, to a plurality of secondary interactive display devices for display.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 9, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
  • Patent number: 11575851
    Abstract: An imaging device includes pixel sensors. A drive-sense circuit is configured to generating a sensed signal corresponding to one of pixel sensors. The drive-sense circuit includes: a first conversion circuit configured to convert, a receive signal component of a sensor signal corresponding to the one of the pixel sensors into the sensed signal, wherein the sensed signal indicates a change in a capacitance associated with the one of the pixel sensors; a second conversion circuit configured to generate, based on the sensed signal, a drive signal component of the sensor signal corresponding to the one of the pixel sensors. The drive-sense circuit is further configured to generate other sensed signals corresponding to other ones of the pixel sensors for the other ones of the pixel sensors. A graphics processing module is configured to generate image data based on the sensed signal and the other sensed signals.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: February 7, 2023
    Assignee: SigmaSense, LLC.
    Inventor: Michael Shawn Gray
  • Patent number: 11575850
    Abstract: An imaging device includes pixel sensors. A drive-sense circuit is configured to generating a sensed signal corresponding to one of pixel sensors. The drive-sense circuit includes: a first conversion circuit configured to convert, a receive signal component of a sensor signal corresponding to the one of the pixel sensors into the sensed signal, wherein the sensed signal indicates a change in a capacitance associated with the one of the pixel sensors; a second conversion circuit configured to generate, based on the sensed signal, a drive signal component of the sensor signal corresponding to the one of the pixel sensors. The drive-sense circuit is further configured to generate other sensed signals corresponding to other ones of the pixel sensors for the other ones of the pixel sensors. A graphics processing module is configured to generate image data based on the sensed signal and the other sensed signals.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: February 7, 2023
    Assignee: SigmaSense, LLC.
    Inventor: Michael Shawn Gray
  • Publication number: 20230032551
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 2, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20230028217
    Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; determining, based on the positive capacitance variation data and the negative capacitance variation data, an upper threshold and a lower threshold; generating compensated capacitance image data, based on the upper threshold and the lower threshold, to compensate for noise in the capacitance image data; and processing the compensated capacitance image data to determine a proximal condition of the touch screen display.
    Type: Application
    Filed: September 23, 2022
    Publication date: January 26, 2023
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Hans Howard Eilers, Kevin Joseph Derichs, Sarah Marie Derichs, Patrick Troy Gray, Phuong Huynh
  • Publication number: 20230019284
    Abstract: A touch-sensitive panel includes row electrodes, column electrodes, and drive-sense circuits coupled to the row electrodes and the column electrodes. The drive-sense circuits detect changes in impedances of the row and column electrodes. The touch-sensitive panel also includes analog-to-digital converters coupled to outputs of the drive-sense circuits, and a processing module coupled to the drive-sense circuits via the analog-to-digital converters. The processing module, the analog-to-digital converters, and the plurality of drive-sense circuits cooperate to sense an information signal capacitively coupled to the row and column electrodes, and to extract data from the information signal to identify a device that produced the information signal.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 19, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Patrick Troy Gray, Timothy W. Markison
  • Patent number: 11556298
    Abstract: A method includes transmitting, by a plurality of drive sense circuits of a primary interactive display device, a plurality of signals on a plurality of electrodes of the primary interactive display device. At least one change in electrical characteristics of a set of electrodes is detected by a set of drive sense circuits during a temporal period. A stream of user notion data is determined by a processing module of the primary interactive display device based on interpreting the at least one change in the electrical characteristics of the set of electrodes during the temporal period. The stream of user notation data is displayed via a display of the primary interactive display device during the temporal period. The stream of user notation data is transmitted, via a network interface of the primary interactive display device, to a plurality of secondary interactive display devices for display.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 17, 2023
    Assignee: SigmaSense, LLC
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
  • Patent number: 11543900
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: January 3, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20220413596
    Abstract: A method includes receiving a first signal from a first button circuit in a first location indicating possible interaction with a corresponding interactable element by a user, and receiving sensed signal data from a first sensor circuit indicating changes in electrical properties of an electrode of the first sensor circuit The method includes determining whether the sensed signal data indicates detection of a first frequency identifying the first location based on receiving the first signal indicating the possible interaction with the corresponding interactable element. When the sensed signal data indicates detection of the first frequency identifying the first location, performance of a functionality associated with the corresponding interactable element is facilitated.
    Type: Application
    Filed: September 23, 2021
    Publication date: December 29, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs, Timothy W. Markison
  • Publication number: 20220409092
    Abstract: A personal monitoring system includes one or more passive biometric sensors and a communication device. A passive biometric sensor is operable to sense a body condition of a body in accordance with a sense signal at a sense frequency to produce sensed data of a body condition. The passive biometric sensor is further operable to transmit an e-field signal via the body regarding the sensed data, wherein the e-field signal is in accordance with an e-field transmit/receive frequency. The communication device is operable to receive the e-field signal via the body. The communication device is further operable to recover the sensed data from the received e-field signal.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Kevin Joseph Derichs, Daniel Keith Van Ostrand, Timothy W. Markison
  • Publication number: 20220410705
    Abstract: A method includes receiving sensed signal data from at least one circuit based on a user in proximity to at least one electrode corresponding to the at least one circuit. Hover detection data indicating a detected hover in proximity to an interactable element of a vehicle is generated. Button feedback display data indicating the interactable element is generated based on the hover detection data. Display of the button feedback display data via a display device is facilitated.
    Type: Application
    Filed: September 23, 2021
    Publication date: December 29, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs
  • Publication number: 20220410911
    Abstract: A method includes receiving a first signal from a button circuit and first sensed signal data from a sensor circuit in the first temporal period. A first occupancy area of a set of occupancy areas is identified based on the first sensed signal data. Performance of a first functionality associated is facilitated based on identifying the first occupancy area. A second signal from the button circuit and second sensed signal data is received in a second temporal period. A second occupancy area of the set of occupancy areas is identified based on the second sensed signal data. Performance of a second functionality is facilitated based on identifying the second occupancy area.
    Type: Application
    Filed: September 23, 2021
    Publication date: December 29, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Kevin Joseph Derichs, Timothy W. Markison