Patents by Inventor Michael Shawn Gray

Michael Shawn Gray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220404925
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating a stream of capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value within a temporal period; and processing the capacitance image data to determine a touchless gesture occurring within the temporal period.
    Type: Application
    Filed: April 12, 2022
    Publication date: December 22, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20220404932
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value; and processing the capacitance image data to determine a touchless indication proximal to the touch screen display based on a touchless indication threshold.
    Type: Application
    Filed: April 12, 2022
    Publication date: December 22, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Publication number: 20220398012
    Abstract: A touch screen display includes a display configured to display images in a display area. Touch sensitive row electrodes and touch sensitive column electrodes are integrated into the display, and are spaced apart to support a highest touch resolution. Also included are drive-sense circuits, a first switch network coupling a first group of drive-sense circuits to the touch sensitive row electrodes, and a second switch network coupling a second group of drive-sense circuits to the touch sensitive column electrodes. A switch controller is coupled to the first switch network and to the second switch network, and is configured to control the first and second switch networks to control touch resolution of at least a portion of the display area between the highest touch resolution and lesser touch resolutions.
    Type: Application
    Filed: June 15, 2021
    Publication date: December 15, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Patent number: 11526234
    Abstract: A method includes obtaining, by a processing module interacting with a touch screen of a computing device, self and mutual capacitance data from a plurality of drive-sense circuits of the computing device. The method further includes generating, by the processing module, capacitance grid data based on the self and mutual capacitance data. The method further includes determining, by the processing module, a use for the capacitance grid data. The method further includes determining, by the processing module, data requirements for the capacitance grid data based on the use and properties of the capacitance grid. When data reduction is enabled, the method further includes determining, by the processing module, a data reduction scheme based on the data requirements and an output data rate. The method further includes processing, by the processing module, the capacitance grid data in accordance with the data reduction scheme to produce reduced capacitive grid data.
    Type: Grant
    Filed: October 10, 2021
    Date of Patent: December 13, 2022
    Assignee: SigmaSense, LLC.
    Inventors: Gerald Dale Morrison, Michael Shawn Gray, Grant Howard McGibney
  • Publication number: 20220390297
    Abstract: A low power force detection system includes variable capacitors, a drive sense module, and a processing module. A drive sense circuit of the drive sense module is operable to provide an analog and frequency domain signal to a variable capacitor. The drive sense circuit is further operable to detect a characteristic of the variable capacitor based on the analog and frequency domain signal and to generate a representative signal of the characteristic. The processing module is operable to generate a digital value based on the representative and to write the digital value to memory.
    Type: Application
    Filed: January 13, 2022
    Publication date: December 8, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Michael Shawn Gray, Kevin Joseph Derichs, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20220381843
    Abstract: A voltage sensor includes a drive-sense circuit (DSC) and a reference load. The DSC is operably coupled to a point along a wire that is proximate to a battery terminal. The wire connects the battery terminal to a load. The DSC is configured to generate a signal based on a reference signal that is reference signal is based on an estimate of a voltage at the point along the wire. The DSC is also configured to generate an output signal that corresponds to a difference between the signal and the reference signal and to tune the reference signal until the signal compares favorably to the voltage at the point along the wire. The DSC also is configured to determine the voltage at the point along the wire based on the tuned reference signal. The reference load is operably coupled to the DSC and the point along a wire.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 1, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Michael Shawn Gray, Timothy W. Markison, Shayne X. Short
  • Publication number: 20220385850
    Abstract: An imaging device includes a plurality of pixel sensors that respond to incident light. At least one drive-sense circuit is configured to generating a sensed signal corresponding to one of the plurality of pixel sensors. The at least one drive-sense circuit includes: a first conversion circuit configured to convert, a receive signal component of a sensor signal corresponding to the one of the plurality of pixel sensors into the sensed signal, wherein the sensed signal indicates a change in a capacitance associated with the one of the plurality of pixel sensors; a second conversion circuit configured to generate, based on the sensed signal, a drive signal component of the sensor signal corresponding to the one of the plurality of pixel sensors. The at least one drive-sense circuit is further configured to generate a plurality of other sensed signals corresponding to other ones of the plurality of pixel sensors for the other ones of the plurality of pixel sensors.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 1, 2022
    Applicant: SigmaSense, LLC.
    Inventor: Michael Shawn Gray
  • Publication number: 20220381842
    Abstract: A battery sensor system (BSS) includes a battery operably coupled to a plurality of loads via a wired connection, where a first load is operably coupled to a terminal of the battery via a first portion of the wired connection and a second load is operably coupled to the terminal via a second portion of the wired connection. The BSS further includes a first drive sense circuit operably coupled proximate to the battery to sense a first voltage. The BSS further includes a second drive sense circuit operably coupled proximate to the first load to sense a second voltage, where the second voltage and first voltage are different based on an impedance of the wired connection between the first point and the second point. The BSS further includes memory and processing modules to process the first and second voltages to determine operational status of the battery, wired connection, and loads.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 1, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Michael Shawn Gray, Timothy W. Markison, Shayne X. Short, Ph.D.
  • Publication number: 20220385851
    Abstract: An imaging device includes a plurality of pixel sensors that respond to incident light. At least one drive-sense circuit is configured to generating a sensed signal corresponding to one of the plurality of pixel sensors. The at least one drive-sense circuit includes: a first conversion circuit configured to convert, a receive signal component of a sensor signal corresponding to the one of the plurality of pixel sensors into the sensed signal, wherein the sensed signal indicates a change in a capacitance associated with the one of the plurality of pixel sensors; a second conversion circuit configured to generate, based on the sensed signal, a drive signal component of the sensor signal corresponding to the one of the plurality of pixel sensors. The at least one drive-sense circuit is further configured to generate a plurality of other sensed signals corresponding to other ones of the plurality of pixel sensors for the other ones of the plurality of pixel sensors.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 1, 2022
    Applicant: SigmaSense, LLC.
    Inventor: Michael Shawn Gray
  • Publication number: 20220357762
    Abstract: A method for execution by one or more processing modules to configure a programmable drive-sense unit (DSU) includes determining one or more load sensing objectives based on sensing a load using the DSU that is configured to drive and simultaneously to sense the load via a single line. The method further includes determining one or more data processing objectives associated with sensing the load. The method further includes determining desired characteristics for the output data associated with sensing the load. The method further includes determining operational parameters for the DSU based on one or more of the load sensing objectives, the data processing objectives, and the desired characteristics for the output data. The method further includes configuring the DSU based on the operational parameters to achieve the one or more load sensing objectives.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Patrick Troy Gray, Michael Shawn Gray, Timothy W. Markison
  • Patent number: 11494006
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: November 8, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11494032
    Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes of a sensor layer adjacent to a compressible dielectric layer adjacent; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; and processing the negative capacitance variation data to determine a compressive touch condition of the touch screen display by a non-conductive object.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: November 8, 2022
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Hans Howard Eilers, Kevin Joseph Derichs, Sarah Marie Derichs, Patrick Troy Gray, Phuong Huynh
  • Publication number: 20220326799
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11429218
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: August 30, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20220261095
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20220236307
    Abstract: A load sensing circuit includes a load coupled to a load source having a load voltage that causes a load signal to flow through the load. A regulated sink circuit is coupled in series to a sink source and the load, and provides a sink voltage. A comparison circuit a reference signal that establishes a reference value of a second electrical characteristic at a reference input; a sense input is coupled to the load and to the regulated sink circuit. The regulated sink circuit regulates the first electrical characteristic of the load signal, based on a regulation signal, so that a sense value of the second electrical characteristic present at the sense input matches the reference value of the second electrical characteristic. A comparison signal is generated at an output of the comparison circuit, and indicates a difference between the sense value of the second electrical characteristic and the reference value of the second electrical characteristic.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Applicant: SigmaSense, LLC.
    Inventors: Patrick Troy Gray, Michael Shawn Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Patent number: 11397492
    Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; and processing the positive capacitive data and the negative capacitance data to determine a shape of an object on the touch screen display.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: July 26, 2022
    Assignee: SigmaSense, LLC.
    Inventors: Kevin Joseph Derichs, Hans Howard Eilers, Daniel Keith Van Ostrand, Sarah Marie Derichs, Richard Stuart Seger, Jr., Michael Shawn Gray, Patrick Troy Gray, Phuong Huynh
  • Publication number: 20220179504
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Application
    Filed: January 27, 2022
    Publication date: June 9, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20220151330
    Abstract: A method includes determining, by a processing module of a foot force detection system, an athletic mode. The method further includes, when the athletic mode is active, determining, by the processing module, an athletic burst mode. The method further includes determining, by the processing module, a sampling rate for the foot force detection system based on the athletic burst mode for sampling foot force data.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Michael Shawn Gray, Richard Stuart Seger, JR., Timothy W. Markison, Kevin Joseph Derichs
  • Publication number: 20220155897
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs