Patents by Inventor Milnes P. DAVID

Milnes P. DAVID has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865522
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9861010
    Abstract: Apparatuses and methods are provided for blocking removal of an air-moving assembly from a chassis when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the chassis, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Christopher R. Ciraulo, Milnes P. David, Dustin W. Demetriou, Robert K. Mullady, Roger R. Schmidt
  • Publication number: 20170316228
    Abstract: Tamper-proof electronic packages and fabrication methods are provided including an enclosure enclosing, at least in part, at least one electronic component within a secure volume, a two-phase dielectric fluid within the secure volume, and a tamper-respondent detector. The tamper-respondent detector monitors, at least in part, temperature and pressure of the two-phase dielectric fluid. In operation, the two-phase dielectric fluid deviates from an established saturation line of the two-phase dielectric fluid within the secure volume with an intrusion event into the secure volume, and the tamper-respondent detector detects, from the monitoring of the temperature and pressure of the two-phase dielectric fluid, the deviation from the established saturation line, and thereby occurrence of the intrusion event.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR.
  • Publication number: 20170303429
    Abstract: Electronics cooling assemblies are provided which include an air-cooled heat sink, an auxiliary air-moving device, and an airflow-blocking mechanism. The heat sink couples to one or more heat-generating electronic components, and dissipates heat from the electronic component(s) to a cooling airflow passing across the heat sink. The auxiliary air-moving device provides, when active, an increased flow rate of the cooling airflow across the heat sink. The airflow-blocking mechanism toggles between a passive airflow position and an active airflow position. In the passive airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the heat sink without passing through the air-moving device, and in the active airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the auxiliary air-moving device.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 19, 2017
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR.
  • Patent number: 9795055
    Abstract: Electronics cooling assemblies are provided which include an air-cooled heat sink, an auxiliary air-moving device, and an airflow-blocking mechanism. The heat sink couples to one or more heat-generating electronic components, and dissipates heat from the electronic component(s) to a cooling airflow passing across the heat sink. The auxiliary air-moving device provides, when active, an increased flow rate of the cooling airflow across the heat sink. The airflow-blocking mechanism toggles between a passive airflow position and an active airflow position. In the passive airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the heat sink without passing through the air-moving device, and in the active airflow position, the airflow-blocking mechanism allows the cooling airflow to exhaust from the auxiliary air-moving device.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr.
  • Patent number: 9761508
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9763357
    Abstract: Methods of fabricating cooling apparatuses with coolant filters are provided which facilitate heat transfer from an electronic component(s). The method includes providing a cooling apparatus which includes a liquid-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a region of reduced cross-sectional coolant flow area. The heat sink includes a coolant inlet and outlet in fluid communication with the compartment, and the region of reduced cross-sectional coolant flow area provides an increased effective heat transfer coefficient between a main heat transfer surface of the conductive structure and the coolant. A coolant loop is also provided coupled to the coolant inlet and outlet to facilitate flow of coolant through the coolant-carrying compartment, and a coolant filter positioned to filter contaminants from the coolant passing through the heat sink.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: September 12, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9750159
    Abstract: Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s).
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9750165
    Abstract: Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 29, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, Milnes P. David, Madhusudan K. Iyengar, Pritish R. Parida, Robert E. Simons
  • Patent number: 9742182
    Abstract: Embodiments are directed to apparatuses used with a computer-implemented method for controlling power flow to an electronic device, including: receiving a transmission from a service processing device, the transmission to trigger an open switch between the electronic device and a power supply; and causing an open switch to occur through use of an interlock mechanism. Embodiments provide a temperature-driven interlock mechanism and moisture-driven interlock mechanism.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: August 22, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Milnes P David, William J Green, Joseph F Prisco, Brian P Rawson, Robert T Sanders, Sharon T Spaulding
  • Publication number: 20170198985
    Abstract: A heat sink structure is provided having fins mechanically altered dynamically to change and optimize the heat sink's performance based on certain environmental conditions. Specifically, the shape of fins of the heat sink structure is dynamically altered in response to environmental conditions that indicate the need for increased thermal performance by spreading the fins through a mechanical device dynamically, or by collapsing the fins to reduce pressure drop across a region when increased thermal performance is not needed.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: Bjorn J. Ahbel, Wiren D. Becker, Marc H. Coq, Milnes P. David, Ryan N. Elsasser, Syed F. Hossain
  • Patent number: 9687943
    Abstract: A heat sink, and cooled electronic structure and cooled electronics apparatus utilizing the heat sink are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels coupled to facilitate the flow of coolant through the coolant-carrying channel(s). The heat sink further includes a membrane associated with the coolant-carrying channel(s). The membrane includes at least one vapor-permeable region, which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s), and at least one orifice coupled to inject coolant onto at least one surface of the coolant-carrying channel(s) intermediate opposite ends of the channel(s).
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 27, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 9686889
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9686891
    Abstract: Thermoelectric-enhanced, rack-level cooling of airflow entering an electronics rack is provided by a cooling apparatus, which includes: an air-to-liquid heat exchanger; a coolant loop coupled to the heat exchanger, the coolant loop including a first loop portion and a second loop portion, where the heat exchanger exhausts heated coolant to the first loop portion and receives cooled coolant from the second loop portion. The cooling apparatus further includes a heat rejection unit and a thermoelectric heat pump(s). The heat rejection unit is coupled to the coolant loop between the first and second loop portions, and provides partially-cooled coolant to the second loop portion. The thermoelectric heat pump is disposed with the first and second loop portions coupled to opposite sides to transfer heat from the partially-cooled coolant within the second loop portion to provide the cooled coolant before entering the air-to-liquid heat exchanger.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 20, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Publication number: 20170169738
    Abstract: Disclosed herein is a packaging label. The label includes a first region comprising a first thermochromic ink where the first thermochromic ink undergoes a permanent change from a first state to a second state when exposed to a first temperature. The label includes a second region having a second thermochromic ink where the second thermochromic ink undergoes a temporary change from the first state to the second state when exposed to the first temperature only to return to the first state upon being exposed to a desired second temperature.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventors: Milnes P. David, William J. O. Green, Joseph F. Prisco, Robert T. Sanders, Sharon T. Spaulding
  • Publication number: 20170146153
    Abstract: An assembly is provided including a flexible conduit and a device connectable to a generally central portion of the flexible conduit. The device includes a base. Movement of the base relative to an adjacent surface is restricted. At least one biasing assembly is attached to the base. The generally central portion of the flexible conduit is connected to the at least one biasing assembly. The at least one biasing assembly is configured to deform when a force is applied near a first end of the flexible conduit such that the force is not transmitted to a second end of the flexible conduit.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 25, 2017
    Inventors: Wiren D. Becker, Marc H. Coq, Milnes P. David, Ryan N. Elsasser, Syed F. Hossain
  • Publication number: 20170131045
    Abstract: A heat sink structure is provided having fins mechanically altered dynamically to change and optimize the heat sink's performance based on certain environmental conditions. Specifically, the shape of fins of the heat sink structure is dynamically altered in response to environmental conditions that indicate the need for increased thermal performance by spreading the fins through a mechanical device dynamically, or by collapsing the fins to reduce pressure drop across a region when increased thermal performance is not needed.
    Type: Application
    Filed: January 27, 2016
    Publication date: May 11, 2017
    Inventors: Bjorn J. Ahbel, Wiren D. Becker, Marc H. Coq, Milnes P. David, Ryan N. Elsasser, Syed F. Hossain
  • Publication number: 20170131047
    Abstract: A heat sink structure is provided having fins mechanically altered dynamically to change and optimize the heat sink's performance based on certain environmental conditions. Specifically, the shape of fins of the heat sink structure is dynamically altered in response to environmental conditions that indicate the need for increased thermal performance by spreading the fins through a mechanical device dynamically, or by collapsing the fins to reduce pressure drop across a region when increased thermal performance is not needed.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Bjorn J. Ahbel, Wiren D. Becker, Marc H. Coq, Milnes P. David, Ryan N. Elsasser, Syed F. Hossain
  • Patent number: 9648786
    Abstract: Apparatuses and methods are provided for preventing removal of an air-moving assembly from a chassis when in operating state. The apparatus includes an interlock assembly having a slide element and one or more interlock elements. The slide element is slideably coupled to the air-moving assembly and resides in a first position when the air-moving assembly is in the operating state, and is slidable to a second position when the air-moving assembly is in a quiesced state. The slide element prevents removal of the air-moving assembly from the chassis in the first position, and allows removal of the air-moving assembly from the chassis in the second position. The interlock element(s) is associated with the slide element and prevents sliding of the slide element from the first position to the second position when the air-moving assembly is in the operating state.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: May 9, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Christopher R. Ciraulo, Milnes P. David, Dustin W. Demetriou, John J. Loparco, Robert K. Mullady, Donald W. Porter, Roger R. Schmidt, Richard P. Snider, John G. Torok
  • Patent number: 9644907
    Abstract: A heat sink structure is provided having fins mechanically altered dynamically to change and optimize the heat sink's performance based on certain environmental conditions. Specifically, the shape of fins of the heat sink structure is dynamically altered in response to environmental conditions that indicate the need for increased thermal performance by spreading the fins through a mechanical device dynamically, or by collapsing the fins to reduce pressure drop across a region when increased thermal performance is not needed.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: May 9, 2017
    Assignee: International Business Machines Corporation
    Inventors: Bjorn J. Ahbel, Wiren D. Becker, Marc H. Coq, Milnes P. David, Ryan N. Elsasser, Syed F. Hossain