Patents by Inventor Milnes P. DAVID

Milnes P. DAVID has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160143192
    Abstract: Cooling control methods include measuring a temperature of at least one component of each of multiple nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the nodes based on the comparisons.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: TIMOTHY J. CHAINER, MILNES P. DAVID, MADHUSUDAN K. IYENGAR, PRITISH R. PARIDA, ROBERT E. SIMONS
  • Publication number: 20160143190
    Abstract: Systems and methods are provided for data center cooling by vaporizing fuel using data center waste heat. The systems include, for instance, an electricity-generating assembly, a liquid fuel storage, and a heat transfer system. The electricity-generating assembly generates electricity from a fuel vapor for supply to the data center. The liquid fuel storage is coupled to supply the fuel vapor, and the heat transfer system is associated with the data center and the liquid fuel storage. In an operational mode, the heat transfer system transfers the data center waste heat to the liquid fuel storage to facilitate vaporization of liquid fuel to produce the fuel vapor for supply to the electricity-generating assembly. The system may be implemented with the liquid fuel storage and heat transfer system being the primary fuel vapor source, or a back-up fuel vapor source.
    Type: Application
    Filed: August 19, 2015
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143185
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143184
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Application
    Filed: August 18, 2015
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20160143189
    Abstract: Composite heat sink structures and methods of fabrication are provided, with the composite heat sink structures including: a thermally conductive base having a main heat transfer surface to couple to, for instance, at least one electronic component to be cooled; a compressible, continuous sealing member; and a sealing member retainer compressing the compressible, continuous sealing member against the thermally conductive base; and an in situ molded member. The in situ molded member is molded over and affixed to the thermally conductive base, and is molded over and secures in place the sealing member retainer. A coolant-carrying compartment resides between the thermally conductive base and the in situ molded member, and a coolant inlet and outlet are provided in fluid communication with the coolant-carrying compartment to facilitate liquid coolant flow through the compartment.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Levi A. CAMPBELL, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, Jr., Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9342079
    Abstract: Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 17, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Milnes P. David, Madhusudan K. Iyengar, Roger R. Schmidt
  • Patent number: 9345169
    Abstract: Liquid-cooled heat sink assemblies are provided which include: a thermally conductive base structure having a sidewall surface and a main heat transfer surface; and a manifold structure attached to the base structure, with the base structure residing at least in part within a recess in the manifold structure. Together, the base and manifold structures define a coolant-carrying compartment through which liquid coolant flows, at least in part, in a direction substantially parallel to the main heat transfer surface of the base structure, and at least one of the sidewall surface of the thermally conductive base structure or an opposing surface thereto of the manifold structure includes a continuous groove. A sealing member is disposed, at least in part, within the continuous groove, and provides a fluid-tight seal between the thermally conductive base structure and the manifold structure.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: May 17, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Roger R. Schmidt, Robert E. Simons
  • Patent number: 9332674
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 3, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9313920
    Abstract: Cooling apparatuses and methods are provided facilitating transfer of heat from a working fluid to a coolant. The cooling apparatus includes a vapor condenser which includes a condenser housing with a condensing chamber accommodating the working fluid and coolant, which are in direct contact within the condensing chamber and are immiscible fluids. The condensing chamber includes a working fluid vapor layer and a working fluid liquid layer; and a working fluid vapor inlet facilitates flow of fluid vapor into the condensing chamber, and a working fluid vapor outlet facilitates egress of working fluid liquid from the condensing chamber. A coolant inlet structure facilitates ingress of coolant into the working fluid vapor layer of the condensing chamber in direct contact with the working fluid vapor to facilitate condensing the vapor into working fluid liquid, and the coolant outlet structure facilitates subsequent egress of coolant from the condensing chamber.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: April 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Dustin W. Demetriou, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Publication number: 20160095258
    Abstract: Apparatuses and methods are provided for blocking removal of an air-moving assembly from a chassis when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the chassis, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, Robert K. MULLADY, Roger R. SCHMIDT
  • Publication number: 20160095261
    Abstract: Apparatuses and methods are provided for preventing removal of an air-moving assembly from a chassis when in operating state. The apparatus includes an interlock assembly having a slide element and one or more interlock elements. The slide element is slideably coupled to the air-moving assembly and resides in a first position when the air-moving assembly is in the operating state, and is slidable to a second position when the air-moving assembly is in a quiesced state. The slide element prevents removal of the air-moving assembly from the chassis in the first position, and allows removal of the air-moving assembly from the chassis in the second position. The interlock element(s) is associated with the slide element and prevents sliding of the slide element from the first position to the second position when the air-moving assembly is in the operating state.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, John J. LOPARCO, Robert K. MULLADY, Donald W. PORTER, Roger R. SCHMIDT, Richard P. SNIDER, John G. TOROK
  • Publication number: 20160095263
    Abstract: Apparatuses and methods are provided for preventing removal of an air-moving assembly from a chassis when in operating state. The apparatus includes an interlock assembly having a slide element and one or more interlock elements. The slide element is slideably coupled to the air-moving assembly and resides in a first position when the air-moving assembly is in the operating state, and is slidable to a second position when the air-moving assembly is in a quiesced state. The slide element prevents removal of the air-moving assembly from the chassis in the first position, and allows removal of the air-moving assembly from the chassis in the second position. The interlock element(s) is associated with the slide element and prevents sliding of the slide element from the first position to the second position when the air-moving assembly is in the operating state.
    Type: Application
    Filed: August 20, 2015
    Publication date: March 31, 2016
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, John J. LOPARCO, Robert K. MULLADY, Donald W. PORTER, Roger R. SCHMIDT, Richard P. SNIDER, John G. TOROK
  • Publication number: 20160095260
    Abstract: Apparatuses and methods are provided for blocking removal of an air-moving assembly from a chassis when in operational state. The apparatus includes a protective louver assembly having a louver(s) and an interlock element(s). The louver(s) is disposed at an air inlet or an air outlet of the air-moving assembly, and pivots between an operational and a quiesced orientation, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The interlock element(s) is associated with the louver(s) to pivot with the louver(s) between the operational orientation and the quiesced orientation. In the operational orientation, the interlock element(s) blocks, at least in part, access to at least one fastener securing the air-moving assembly within the chassis, and thereby prevents removal of the air-moving assembly from the chassis when in the operational state.
    Type: Application
    Filed: August 20, 2015
    Publication date: March 31, 2016
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, Robert K. MULLADY, Roger R. SCHMIDT
  • Publication number: 20160095259
    Abstract: Apparatuses and methods are provided for locking an air-moving assembly within a chassis when in operational state. The apparatus includes a locking louver assembly having a louver(s) and locking mechanism. The louver(s) is disposed at an air inlet or outlet of the air-moving assembly, and pivots between operational and quiesced orientations, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The locking mechanism includes a keying element(s) affixed to the louver(s) to pivot therewith, which includes an elongated key(s) oriented in a first direction when the louver(s) is in operational orientation, and a second direction when in quiesced orientation. A key-receiving element(s) is associated with the chassis and includes a key opening(s) which receives and accommodates movement of the elongated key(s) between the first and second directions, and prevents removal of the air-moving assembly from the chassis with the key(s) oriented in the first direction.
    Type: Application
    Filed: August 20, 2015
    Publication date: March 31, 2016
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, Robert K. MULLADY, Roger R. SCHMIDT
  • Publication number: 20160095257
    Abstract: Apparatuses and methods are provided for locking an air-moving assembly within a chassis when in operational state. The apparatus includes a locking louver assembly having a louver(s) and locking mechanism. The louver(s) is disposed at an air inlet or outlet of the air-moving assembly, and pivots between operational and quiesced orientations, dependent on presence or absence, respectively, of airflow through the air-moving assembly. The locking mechanism includes a keying element(s) affixed to the louver(s) to pivot therewith, which includes an elongated key(s) oriented in a first direction when the louver(s) is in operational orientation, and a second direction when in quiesced orientation. A key-receiving element(s) is associated with the chassis and includes a key opening(s) which receives and accommodates movement of the elongated key(s) between the first and second directions, and prevents removal of the air-moving assembly from the chassis with the key(s) oriented in the first direction.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Levi A. CAMPBELL, Christopher R. CIRAULO, Milnes P. DAVID, Dustin W. DEMETRIOU, Robert K. MULLADY, Roger R. SCHMIDT
  • Publication number: 20160088764
    Abstract: Apparatuses and methods are provided for facilitating air-cooling of, for instance, one or more electronics racks within a data center. The apparatus includes an air-moving assembly and one or more flywheels. The air-moving assembly includes a shaft, one or more mechanical fans coupled to the shaft to rotate, at least in part, with the shaft, and a motor coupled to the shaft to rotatably drive the shaft. The flywheel(s) is sized and coupled to the shaft of the air-moving assembly to store rotational energy, and to facilitate, for a specified period of time, continued rotation of the shaft during interruption in power to the motor. In one implementation, the flywheel(s) is sized and coupled to the shaft to facilitate, for the specified time period, continued rotation of the shaft at a specified percentage, or greater, rotational speed of the shaft compared with shaft speed when rotatably driven by the motor.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Milnes P. DAVID, Michael J. DOMITROVITS, Joshua MURPHY, John V. PALMER, Sal M. ROSATO
  • Publication number: 20160084257
    Abstract: Apparatuses and methods are provided for facilitating air-cooling of, for instance, one or more electronics racks within a data center. The apparatus includes an air-moving assembly and one or more flywheels. The air-moving assembly includes a shaft, one or more mechanical fans coupled to the shaft to rotate, at least in part, with the shaft, and a motor coupled to the shaft to rotatably drive the shaft. The flywheel(s) is sized and coupled to the shaft of the air-moving assembly to store rotational energy, and to facilitate, for a specified period of time, continued rotation of the shaft during interruption in power to the motor. In one implementation, the flywheel(s) is sized and coupled to the shaft to facilitate, for the specified time period, continued rotation of the shaft at a specified percentage, or greater, rotational speed of the shaft compared with shaft speed when rotatably driven by the motor.
    Type: Application
    Filed: August 18, 2015
    Publication date: March 24, 2016
    Inventors: Milnes P. DAVID, Michael J. DOMITROVITS, Joshua MURPHY, John V. PALMER, Sal M. ROSATO
  • Publication number: 20160088777
    Abstract: Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9295181
    Abstract: A coolant-conditioning unit is provided which includes a facility coolant path, having a facility coolant flow control valve, and a system coolant path accommodating a system coolant, and having a bypass line with a system coolant bypass valve. A heat exchanger is coupled to the facility and system coolant paths to facilitate transfer of heat from the system coolant to facility coolant in the facility coolant path, and the bypass line is disposed in the system coolant path in parallel with the heat exchanger. A controller automatically controls a regulation position of the coolant bypass valve and a regulation position of the facility coolant flow control valve based on a temperature of the system coolant, and automatically adjusts the regulation position of the system coolant bypass valve to facilitate maintaining the facility coolant flow control valve at or above a specified, partially open, minimum regulation position.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9291281
    Abstract: Cooling apparatuses and methods are presented for facilitating dissipation of heat generated by one or more electronic components. The apparatuses include, for instance, a coolant-cooled heat sink and a thermostat-controlled valve. The heat sink includes one or more coolant-carrying channels and one or more valve wells intersecting the channels. The thermostat-controlled valve is disposed, at least partially, within a respective valve well so as to intersect a respective coolant-carrying channel, and includes a valve disk and a thermal-sensitive actuator mechanically coupled to rotate the valve disk. The valve disk is rotatable between an open position where coolant is allowed to flow through the respective coolant-carrying channel, and a closed position where coolant is blocked from flowing through the respective channel. The actuator rotates the valve disk between the open position and the closed position, dependent on heating of the thermal-sensitive actuator by the electronic component(s).
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons