Patents by Inventor Ming Mao

Ming Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160284989
    Abstract: Systems and methods for controlling a thickness of a soft bias layer in a tunnel magnetoresistance (TMR) reader are provided. One such method involves providing a magnetoresistive sensor stack including a free layer and a bottom shield layer, performing contiguous junction milling on the sensor stack, depositing an insulating layer on the sensor stack, depositing a spacer layer on the insulating layer, performing an angled milling sub-process to remove preselected portions of the spacer layer, depositing a soft bias layer on the sensor stack, and depositing a top shield layer on the sensor stack and the soft bias layer. The method can further involve adjusting an alignment of a top surface of the spacer layer with respect to the free layer. In one such case, the top surface of the spacer layer is adjust to be below the free layer.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: YI ZHENG, MING JIANG, ANUP G. ROY, GUANXIONG LI, MING MAO, DANIELE MAURI
  • Patent number: 9449621
    Abstract: A magnetic read apparatus has an air-bearing surface (ABS) and includes a read sensor and a rear magnetic bias structure. The read sensor includes first and second free layers, a spacer layer and a rear surface opposite to the ABS. The spacer layer is nonmagnetic and between the first and second free layers. The read sensor has a track width in a cross track direction parallel to the ABS. The rear magnetic bias structure magnetically biases the read sensor a stripe height direction perpendicular to the ABS. The read sensor is between the ABS and the rear magnetic bias structure. The rear magnetic bias structure has a width in the cross track direction and a length in the stripe height direction. The length is greater than the width. The width of the rear magnetic bias structure is substantially equal to the track width of the read sensor.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: September 20, 2016
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Daniele Mauri, Savas Gider, Hui Zhao, Ming Mao
  • Patent number: 9431032
    Abstract: A method and system provide a magnetic transducer including first and second read sensors, a shield and a conductive via. The shield is between the first and second read sensors. The magnetic transducer also includes first and second read shields. The shield has a top surface and a bottom surface opposite to the top surface. The bottom surface faces the first read sensor. The conductive via is isolated from the first read shield and the second read shield. The conductive via provides electrical contact to the shield and is electrically connected to the bottom surface of the shield.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: August 30, 2016
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shaoping Li, Steven C. Rudy, Ge Yi, Gerardo A. Bertero, Qunwen Leng, Ming Mao
  • Patent number: 9431031
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS). The method includes providing a first shield, a first read sensor, an antiferromagnetically coupled (AFC) shield that includes an antiferromagnet, a second read sensor and a second shield. The read sensors are between the first and second shields. The AFC shield is between the read sensors. An optional anneal for the first shield is in a magnetic field at a first angle from the ABS. Anneals for the first and second read sensors are in magnetic fields in desired first and second read sensor bias directions. The AFC shield anneal is in a magnetic field at a third angle from the ABS. The second shield anneal is in a magnetic field at a fifth angle from the ABS. The fifth angle is selected based on a thickness and a desired AFC shield bias direction for the antiferromagnet.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 30, 2016
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Rongfu Xiao, Shihai He, Daniele Mauri, Ming Mao, Shaoping Li
  • Patent number: 9431040
    Abstract: A magnetic recording transducer comprises a magnetoresistive sensor having a left side, a right side opposite to the left side, a left junction angle at the left side, a right junction angle at the right side, and a track width. The right junction angle and the left junction angle are characterized by a junction angle difference of not more than six degrees. The track width is less than one hundred nanometers. The magnetic recording transducer further comprises a left hard bias structure residing adjacent to the left side of the magnetoresistive sensor, and a right hard bias structure residing adjacent to the right side of the magnetoresistive sensor.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 30, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanxiong Li, Wei Zhang, Ming Mao
  • Patent number: 9412400
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: August 9, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Rongfu Xiao, Guanxiong Li, Zhihong Zhang, Ming Mao, Chen-Jung Chien
  • Patent number: 9406331
    Abstract: Disclosed are methods for making ultra-narrow track width (TW) read sensors, and read transducers incorporating such sensors. The methods utilize side-wall line patterning techniques to prepare ultra-narrow mill masks that can be used to prepare the ultra-narrow read sensors.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: August 2, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Miao Wang, Wei Gao, Xiaoyu Yang, Anup G. Roy, Wei Zhang, Wencheng Su, Zhihong Zhang, James Yuan, Guanxiong Li, Ming Mao, Hai Sun, Lingyun Miao
  • Patent number: 9396743
    Abstract: Systems and methods for controlling a thickness of a soft bias layer in a tunnel magnetoresistance (TMR) reader are provided. One such method involves providing a magnetoresistive sensor stack including a free layer and a bottom shield layer, performing contiguous junction milling on the sensor stack, depositing an insulating layer on the sensor stack, depositing a spacer layer on the insulating layer, performing an angled milling sub-process to remove preselected portions of the spacer layer, depositing a soft bias layer on the sensor stack, and depositing a top shield layer on the sensor stack and the soft bias layer. The method can further involve adjusting an alignment of a top surface of the spacer layer with respect to the free layer. In one such case, the top surface of the spacer layer is adjusted to be below the free layer.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 19, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yi Zheng, Ming Jiang, Anup G. Roy, Guanxiong Li, Ming Mao, Daniele Mauri
  • Publication number: 20160180870
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Application
    Filed: November 17, 2015
    Publication date: June 23, 2016
    Applicant: Western Digital (Fremont), LLC
    Inventors: SHAOPING LI, YUANKAI ZHENG, GERARDO A. BERTERO, QUNWEN LENG, MICHAEL L. MALLARY, RONGFU XIAO, MING MAO, ZHIHONG ZHANG, ANUP G. ROY, CHEN JUNG CHIEN, ZHITAO DIAO, LING WANG
  • Publication number: 20160163961
    Abstract: A spin transfer torque magnetic junction includes a magnetic reference layer structure with magnetic anisotropy perpendicular to a substrate plane. A laminated magnetic free layer comprises at least three sublayers (e.g. sub-layers of CoFeB, CoPt, FePt, or CoPd) having magnetic anisotropy perpendicular to the substrate plane. Each such sublayer is separated from an adjacent one by a dusting layer (e.g. tantalum). An insulative barrier layer (e.g. MgO) is disposed between the laminated free layer and the magnetic reference layer structure. The spin transfer torque magnetic junction includes conductive base and top electrodes, and a current polarizing structure that has magnetic anisotropy parallel to the substrate plane. In certain embodiments, the current polarizing structure may also include a non-magnetic spacer layer (e.g. MgO, copper, etc).
    Type: Application
    Filed: January 12, 2016
    Publication date: June 9, 2016
    Inventors: Shaoping Li, Gerardo A. Bertero, Yuankai Zheng, Qunwen Leng, Shihai He, Yunfei Ding, Ming Mao, Abhinandan Chougule, Daniel K. Lottis
  • Patent number: 9318130
    Abstract: A method of fabricating a magnetic device includes forming a sensor having a pinned layer and a free layer. A first reactive ion etch of a sensor stack patterns a hard mask layer with a photoresist image to form a first hard mask. Then a second reactive ion etch is performed to form an extended pinned layer. The method also includes depositing an insulating layer after the second reactive ion etch to protect exposed edges of the sensor stack, and then providing a chemical mechanical planarization (CMP) stop layer on the insulating layer. Subsequently, a CMP of the sensor stack is performed to remove a portion of the insulating layer. The resulting structure is substantially free of residue on the back edges of the sensor.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: April 19, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wei Gao, Guanghong Luo, Lily Yao, Ming Mao, Ming Jiang
  • Patent number: 9312064
    Abstract: A first layered structure includes a magnetic layer, a first hard mask layer, a second hard mask layer, and a first stepping layer. The first stepping layer is etched through to create a sidewall. A mask-width definition layer is deposited on and adjacent to the sidewall, until a mask-width definition layer thickness is achieved adjacent to the sidewall. The mask-width definition layer is removed except on the sidewall. The first stepping layer is removed. The second hard mask layer is etched away, except for a remainder of the second hard mask layer beneath the mask-width definition layer. The first hard mask layer is etched away around the remainder of the second hard mask layer, to form a dual layer hard mask comprising the remainder of the second hard mask layer and the remainder of the first hard mask layer. The magnetic layer is ion milled around the dual hard mask.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: April 12, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Miao Wang, Wei Gao, Lingyun Miao, Hai Sun, Ming Mao
  • Patent number: 9236560
    Abstract: A spin transfer torque magnetic junction includes a magnetic reference layer structure with magnetic anisotropy perpendicular to a substrate plane. A laminated magnetic free layer comprises at least three sublayers (e.g. sub-layers of 6 to 30 Angstroms of CoFeB, CoPt, FePt, or CoPd) having magnetic anisotropy perpendicular to the substrate plane. Each such sublayer is separated from an adjacent one by a tantalum dusting layer. An insulative barrier layer (e.g. MgO) is disposed between the laminated free layer and the magnetic reference layer structure. The spin transfer torque magnetic junction includes conductive base and top electrodes, and a current polarizing structure that has magnetic anisotropy parallel to the substrate plane. In certain embodiments, the current polarizing structure may also include a non-magnetic spacer layer (e.g. MgO, copper, etc).
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 12, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shaoping Li, Gerardo A. Bertero, Yuankai Zheng, Qunwen Leng, Shihai He, Yunfei Ding, Ming Mao, Abhinandan Chougule, Daniel K. Lottis
  • Patent number: 9230565
    Abstract: A magnetic shield for a magnetic recording head includes a plurality of ferromagnetic layers, a spacer layer, and a buffer layer, wherein the buffer layer includes Co, Fe, B, or a combination thereof and effectively reduces irregular grain growth within the ferromagnetic layers, the spacer layer includes Ru, and the ferromagnetic layers magnetically couple through each of the buffer layer and the spacer layer.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: January 5, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Rongfu Xiao, Daniele Mauri, Ming Mao, Haiwen Xi
  • Publication number: 20150371666
    Abstract: A magnetic shield for a magnetic recording head includes a plurality of ferromagnetic layers, a spacer layer, and a buffer layer, wherein the buffer layer includes Co, Fe, B, or a combination thereof and effectively reduces irregular grain growth within the ferromagnetic layers, the spacer layer includes Ru, and the ferromagnetic layers magnetically couple through each of the buffer layer and the spacer layer.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 24, 2015
    Inventors: RONGFU XIAO, DANIELE MAURI, MING MAO, HAIWEN XI
  • Patent number: 9214172
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 15, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shaoping Li, Yuankai Zheng, Gerardo A. Bertero, Qunwen Leng, Michael L. Mallary, Rongfu Xiao, Ming Mao, Zhihong Zhang, Anup G. Roy, Chen Jung Chien, Zhitao Diao, Ling Wang
  • Publication number: 20150279393
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Inventors: RONGFU XIAO, GUANXIONG LI, ZHIHONG ZHANG, MING MAO, CHEN-JUNG CHIEN
  • Patent number: 9147404
    Abstract: A method provides a magnetic transducer having an air-bearing surface (ABS). The method includes providing a read sensor stack for a read sensor of the read device and defining a read sensor from the read sensor stack in a stripe height direction. The stripe height direction is perpendicular to the ABS. At least one magnetic bias structure is also provided. An insulating layer is deposited on the read sensor. The insulating layer has a full film removal rate of not more than fifty Angstroms per minute. The insulating layer also has a top surface. The insulating layer is planarized. At least a portion of the top surface of the insulating layer being exposed at the start of the planarizing step. At least the read sensor is defined in a track width direction.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: September 29, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanghong Luo, Chen-Jung Chien, Ming Mao, Daniele Mauri, Ming Jiang
  • Patent number: 9087534
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS). The magnetic transducer includes a first shield, a read sensor, at least one soft magnetic bias structure and at least one hard bias structure. The read sensor includes a sensor layer that has at least one edge in the track width direction along the ABS. The soft magnetic bias structure(s) are adjacent to the edge(s) of the sensor layer. The soft magnetic bias structure has a first permeability. The soft bias structure(s) are between the read sensor and the hard bias structure(s). The hard bias structure(s) are adjacent to a portion of the soft bias structure(s) and have a second permeability. The first permeability is at least ten multiplied by the second permeability.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: July 21, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Laurence L. Chen, Anup G. Roy, Yunfei Ding, Ming Mao, Amritpal S. Rana, Daniele Mauri
  • Patent number: 9065043
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: June 23, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Rongfu Xiao, Guanxiong Li, Zhihong Zhang, Ming Mao, Chen-Jung Chien