Patents by Inventor Mohamed Sabri

Mohamed Sabri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160122265
    Abstract: Co-extraction techniques for separating and purifying butadiene and isoprene from a C4 hydrocarbon mixture including butadiene and a C5 hydrocarbon mixture including isoprene are provided. In an exemplary embodiment, a system includes a dimerization heat exchanger, a C5 purification column; an extraction zone including a mainwasher column, a rectifier column and an afterwasher column; a distillation zone; a degassing zone; and an isoprene finishing column. The system can further include a C5 washer column, an absorption column, and a distillation column.
    Type: Application
    Filed: June 19, 2014
    Publication date: May 5, 2016
    Inventor: Mohamed Sabri Abdelghani
  • Publication number: 20160079057
    Abstract: A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume and including a substrate support for supporting the substrate. A gas delivery system is configured to introduce process gas into the reaction volume of the processing chamber. A plasma generator is configured to selectively generate RF plasma in the reaction volume. A clamping system is configured to clamp the substrate to the substrate support during deposition of the film. A backside purging system is configured to supply a reactant gas to a backside edge of the substrate to purge the backside edge during the deposition of the film.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 17, 2016
    Inventors: Sesha Varadarajan, Shankar Swaminathan, Saangrut Sangplung, Frank Pasquale, Ted Minshall, Adrien LaVoie, Mohamed Sabri, Cody Barnett
  • Publication number: 20160056032
    Abstract: Disclosed are methods of depositing films of material on semiconductor substrates. The methods may include flowing a film precursor into a processing chamber through a showerhead substantially maintained at a first temperature, and adsorbing the film precursor onto a substrate held on a substrate holder such that the precursor forms an adsorption-limited layer while the substrate holder is substantially maintained at a second temperature. The first temperature may be at least about 10° C. above the second temperature, or the first temperature may be at or below the second temperature. The methods may further include removing at least some unadsorbed film precursor from the volume surrounding the adsorbed film precursor, and thereafter reacting adsorbed film precursor to form a film layer. Also disclosed herein are apparatuses having a processing chamber, a substrate holder, a showerhead, and one or more controllers for operating the apparatus to employ the foregoing film deposition techniques.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Chloe Baldasseroni, Adrien LaVoie, Hu Kang, Jun Qian, Purushottam Kumar, Andrew Duvall, Cody Barnett, Mohamed Sabri, Ramesh Chandrasekharan, Karl F. Leeser, David C. Smith, Seshasayee Varadarajan, Edmund B. Minshall
  • Publication number: 20160032453
    Abstract: A vapor delivery system includes an ampoule to store liquid precursor and a heater to partially vaporize the liquid precursor. A first valve communicates with a push gas source and the ampoule. A second valve supplies vaporized precursor to a heated injection manifold. A valve manifold includes a first node in fluid communication with an outlet of the heated injection manifold, a third valve having an inlet in fluid communication with the first node and an outlet in fluid communication with vacuum, a fourth valve having an inlet in fluid communication with the first node and an outlet in fluid communication with a second node, a fifth valve having an outlet in fluid communication with the second node, and a sixth valve having an outlet in fluid communication with the second node. A gas distribution device is in fluid communication with the second node.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 4, 2016
    Inventors: Jun Qian, Hu Kang, Purushottam Kumar, Chloe Baldasseroni, Heather Landis, Andrew Kenichi Duvall, Mohamed Sabri, Ramesh Chandrasekharan, Karl Leeser, Shankar Swaminathan, David Smith, Jeremiah Baldwin, Eashwar Ranganathan, Adrien LaVoie, Frank Pasquale, Jeongseok Ha, lngi Bae
  • Publication number: 20150380278
    Abstract: An apparatus for degassing gases having large gas molecules, such as argon, from liquids for use in semiconductor processing is provided. The apparatus includes a spool-free tubing in a cylindrical vessel with a removable lid and crystalline window. The apparatus is assembled by removing the lid, connecting the tubing via connectors to an inlet and outlet in the lid, and placing the tubing into the vessel with the lid, and securing the lid.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Heather Landis, Adrien LaVoie, Mohamed Sabri
  • Publication number: 20150139896
    Abstract: A solar energy based continuous process and reactor system for the production of an alkene by dehydrogenation of the corresponding alkane is performed in a reactor which process comprises alternatingly performing a first mode and a second mode in the same reactor, wherein the first mode is a non-oxidative dehydrogenation wherein the non-oxidative dehydrogenation is performed by contacting the alkane with a suitable dehydrogenation catalyst at a temperature of at least 500° C. to produce the corresponding alkene and hydrogen and wherein the second mode is an oxidative dehydrogenation wherein the oxidative dehydrogenation is performed by contacting the alkane with a suitable dehydrogenation catalyst and an oxidation agent at a temperature from 300 to 500° C. to produce the corresponding alkene wherein the dehydrogenation catalyst for the oxidative dehydrogenation and the non-oxidative dehydrogenation are the same, wherein the heat for the first mode is provided by a solar energy source.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Mohamed Sabri Abdelghani, Mustapha Karime, Zeeshan Nawaz, Abdullah Mohammad Al-Qahtani
  • Publication number: 20150114292
    Abstract: The present invention provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature, UV spectral distribution, and other conditions may be independently modulated in each operation. Operations may be pulsed or even be concurrently applied to the same wafer. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 30, 2015
    Inventors: Jason Dirk Haverkamp, Dennis M. Hausmann, Kevin M. McLaughlin, Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Patent number: 8980769
    Abstract: The present invention provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature, UV spectral distribution, and other conditions may be independently modulated in each operation. Operations may be pulsed or even be concurrently applied to the same wafer. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 17, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Haverkamp, Dennis Hausmann, Kevin McLaughlin, Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Publication number: 20140238608
    Abstract: A showerhead assembly for a substrate processing system includes a back plate connected to a gas channel. A face plate is connected adjacent to a first surface of the back plate and includes a gas diffusion surface. An electrode is arranged in one of the back plate and the face plate and is connected to one or more conductors. A gas plenum is defined between the back plate and the face plate and is in fluid communication with the gas channel. The back plate and the face plate are made of a non-metallic material.
    Type: Application
    Filed: April 8, 2013
    Publication date: August 28, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Mohamed Sabri, Edward Augustyniak, Douglas L. Keil, Ramkishan Rao Lingampalli, Karl Leeser, Cody Barnett
  • Publication number: 20140096834
    Abstract: A method for supplying vapor to a chamber includes providing a first diverter valve that, when open, diverts vapor away from the chamber, and a second diverter valve that, when open, supplies the vapor to the chamber; supplying a carrier gas to the chamber; after supplying the carrier gas, creating plasma in the chamber while a substrate is in the chamber; opening the first diverter valve and closing the second diverter valve; supplying the vapor by vaporizing at least one liquid precursor in a carrier gas; after a first predetermined period sufficient for the vapor to reach steady-state flow, closing the first diverter valve and opening the second diverter valve to supply the vapor to the chamber; and after a second predetermined period following the first predetermined period, opening the first diverter valve and closing the second diverter valve to stop supplying the vapor to the chamber.
    Type: Application
    Filed: December 4, 2013
    Publication date: April 10, 2014
    Applicant: Lam Research Corporation
    Inventors: Damien Slevin, Brad Laird, Curtis Bailey, Ming Li, Sirish Reddy, James Sims, Mohamed Sabri, Saangrut Sangplug
  • Publication number: 20140080324
    Abstract: The present invention addresses provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature and other conditions may be independently modulated in each operation. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film. In certain embodiments, the curing takes place in a multi-station UV chamber wherein UV intensity and substrate temperature may be independently controlled at each station.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Patent number: 8629068
    Abstract: The present invention addresses provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature and other conditions may be independently modulated in each operation. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film. In certain embodiments, the curing takes place in a multi-station UV chamber wherein UV intensity and substrate temperature may be independently controlled at each station.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: January 14, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Patent number: 8628618
    Abstract: A vapor delivery system for supplying vapor to a chamber in a plasma-enhanced chemical vapor deposition (PECVD) system includes a vapor supply that supplies vapor by vaporizing at least one liquid precursor in a carrier gas. A first path includes a first filter that filters the vapor flowing from the vapor supply to the chamber. At least one second path is parallel to the first path and includes a second filter that filters vapor flowing from the vapor supply to the chamber. A plurality of valves are configured to switch delivery of the vapor to the chamber between the first path and the second path.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: January 14, 2014
    Assignee: Novellus Systems Inc.
    Inventors: Damien Slevin, Brad Laird, Curtis Bailey, Ming Li, Sirish Reddy, James Sims, Mohamed Sabri, Saangrut Sangplug
  • Patent number: 8454750
    Abstract: The present invention addresses provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature and other conditions may be independently modulated in each operation. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film. In certain embodiments, the curing takes place in a multi-station UV chamber wherein UV intensity and substrate temperature may be independently controlled at each station.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: June 4, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Publication number: 20130092086
    Abstract: A system for reducing parasitic plasma in a semiconductor process comprises a first surface and a plurality of dielectric layers that are arranged between an electrode and the first surface. The first surface and the electrode have substantially different electrical potentials. The plurality of dielectric layers defines a first gap between the electrode and one of the plurality of dielectric layers, a second gap between adjacent ones of the plurality of dielectric layers, and a third gap between a last one of the plurality of dielectric layers and the first surface. A number of the plurality of dielectric layers and sizes of the first gap, the second gap and the third gap are selected to prevent parasitic plasma between the first surface and the electrode during the semiconductor process.
    Type: Application
    Filed: November 23, 2011
    Publication date: April 18, 2013
    Applicant: Novellus Systems, Inc.
    Inventors: Douglas Keil, Edward Augustyniak, Karl Leeser, Mohamed Sabri
  • Publication number: 20130037404
    Abstract: The invention relates to a process for separating a multi-component feed mixture in a distillation system comprising a first distillation column having a first fired reboiler, and at least a second distillation column having a second heat-exchange reboiler, comprising the steps of a) introducing the feed mixture to the first column, and separating into at least a first top and a first bottom product; b) taking part of the first bottom product for providing heat to the second reboiler as a utility stream; and c) feeding part of said utility stream after heat-exchange as main feed to the second column for further separation. This process allows significant energy savings, by reduction of the amount of external heat required for the fired reboiler and omission of a conventionally used heat-exhanger. The invention also relates to such distillation system suitable for separating a multi-component mixture with the process of the invention.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 14, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventor: Mohamed Sabri Abdelghani
  • Publication number: 20120222815
    Abstract: Various implementations of hybrid ceramic faceplates for substrate processing showerheads are provided. The hybrid ceramic showerhead faceplates may include an electrode embedded within the ceramic material of the faceplate, as well as a pattern of through-holes. The electrode may be fully encapsulated within the ceramic material with respect to the through-holes. In some implementations, a heater element may also be embedded within the hybrid ceramic showerhead faceplate. A DC voltage source may be electrically connected with the hybrid ceramic showerhead faceplate during use. The hybrid ceramic faceplates may be easily removable from the substrate processing showerheads for easy cleaning and faceplate replacement.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Inventors: Mohamed Sabri, Ramkishan Rao Lingampalli, Karl F. Leeser
  • Publication number: 20120164834
    Abstract: Methods and hardware for generating variable-density plasmas are described. For example, in one embodiment, a process station comprises a showerhead including a showerhead electrode and a substrate holder including a mesa configured to support a substrate, wherein the substrate holder is disposed beneath the showerhead. The substrate holder includes an inner electrode disposed in an inner region of the substrate holder and an outer electrode being disposed in an outer region of the substrate holder. The process station further comprises a plasma generator configured to generate a plasma in a plasma region disposed between the showerhead and the substrate holder, and a controller configured to control the plasma generator, the inner electrode, the outer electrode, and the showerhead electrode to effect a greater plasma density in an outer portion of the plasma region than in an inner portion of the plasma region.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventors: Kevin Jennings, Mohamed Sabri, Edward Augustyniak, Sunil Kapoor, Douglas Keil
  • Publication number: 20110285254
    Abstract: A self-starting electromotor having a stator and a rotor, the stator including at least one stator module of N toroid shaped electromagnets, the electromagnets arranged along an arc a predetermined distance apart defining a stator arc length. Each of the electromagnets has at least one gap. The rotor includes a disc adapted to pass through the at least one gap. The disc includes a plurality of permanent magnets spaced side by side about a periphery thereof and arranged so as to have alternating north-south polarities. The permanent magnets are sized and spaced such that within the stator arc length the ratio of permanent magnets to electromagnets is N+1 to N, to where N is the number of electrical excitation phases applied to the electromagnets.
    Type: Application
    Filed: January 3, 2011
    Publication date: November 24, 2011
    Applicant: APEX DRIVE LABORATORIES, INC.
    Inventors: John E. Bales, Edward Failing Ritz, JR., Tommy Long, J. Lynn Saunders, Mohamed Sabri
  • Patent number: 8013196
    Abstract: The invention relates to a process for the production of ethylene, comprising the steps of a) thermally converting, by a pyrolysis or a partial oxidation process, a feed charge containing methane into an acetylene containing effluent, and b) in situ hydrogenating, by a non-catalytic reaction, the acetylene produced in the first step into ethylene by intimately mixing the acetylene containing effluent with an ethane feed. The process according to the invention is more efficient than other synthesis schemes, while simplifying the overall process design. This process thus offers an economically attractive scheme for mass production of ethylene from natural gas, based on a well-known and proven acetylene route.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: September 6, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Aggadin Mamedov, Saeed Al-Wahabi, Yungyi Lin, Mohamed Sabri Abdelghani, Akram Al-Alwan