Patents by Inventor Noel Rocklein

Noel Rocklein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8183110
    Abstract: Some embodiments include memory cells. The memory cells may include a tunnel dielectric material, a charge-retaining region over the tunnel dielectric material, crystalline ultra-high k dielectric material over the charge-retaining region, and a control gate material over the crystalline ultra-high k dielectric material. Additionally, the memory cells may include an amorphous region between the charge-retaining region and the crystalline ultra-high k dielectric material, and/or may include an amorphous region between the crystalline ultra-high k dielectric material and the control gate material. Some embodiments include methods of forming memory cells which contain an amorphous region between a charge-retaining region and a crystalline ultra-high k dielectric material, and/or which contain an amorphous region between a crystalline ultra-high k dielectric material and a control gate material.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: May 22, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Noel Rocklein, Kyu S. Min
  • Publication number: 20120098093
    Abstract: A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 26, 2012
    Inventors: Vishwanath Bhat, Noel Rocklein, F. Daniel Gealy
  • Publication number: 20120037902
    Abstract: The invention includes a dielectric mode from ALD-type methods in which two or more different precursors are utilized with one or more reactants to form the dielectric material. In particular aspects, the precursors are aluminum and hafnium and/or zirconium for materials made from a hafnium precursor, the hafnium oxide is predominantly in a tetragonal crystalline phase.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Applicant: Round Rock Research, LLC
    Inventors: Cancheepuram V. Srividya, Noel Rocklein, John Vernon, Jeff Nelson, F. Daniel Gealy, David Korn
  • Patent number: 8110469
    Abstract: Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: February 7, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Dan Gealy, Vishwanath Bhat, Cancheepuram V. Srividya, M. Noel Rocklein
  • Patent number: 8105896
    Abstract: A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 31, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Noel Rocklein, F. Daniel Gealy
  • Patent number: 8049304
    Abstract: The invention includes ALD-type methods in which two or more different precursors are utilized with one or more reactants to form a material. In particular aspects, the precursors are hafnium and aluminum, the only reactant is ozone, and the material is hafnium oxide predominantly in a tetragonal crystalline phase.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: November 1, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Cancheepuram V. Srividya, Noel Rocklein, John Vernon, Jeff Nelson, F. Daniel Gealy, David Korn
  • Publication number: 20110254129
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: June 28, 2011
    Publication date: October 20, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Publication number: 20110220989
    Abstract: Some embodiments include memory cells. The memory cells may include a tunnel dielectric material, a charge-retaining region over the tunnel dielectric material, crystalline ultra-high k dielectric material over the charge-retaining region, and a control gate material over the crystalline ultra-high k dielectric material. Additionally, the memory cells may include an amorphous region between the charge-retaining region and the crystalline ultra-high k dielectric material, and/or may include an amorphous region between the crystalline ultra-high k dielectric material and the control gate material. Some embodiments include methods of forming memory cells which contain an amorphous region between a charge-retaining region and a crystalline ultra-high k dielectric material, and/or which contain an amorphous region between a crystalline ultra-high k dielectric material and a control gate material.
    Type: Application
    Filed: May 26, 2011
    Publication date: September 15, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Noel Rocklein, Kyu S. Min
  • Patent number: 7968969
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Patent number: 7968406
    Abstract: Some embodiments include memory cells. The memory cells may include a tunnel dielectric material, a charge-retaining region over the tunnel dielectric material, crystalline ultra-high k dielectric material over the charge-retaining region, and a control gate material over the crystalline ultra-high k dielectric material. Additionally, the memory cells may include an amorphous region between the charge-retaining region and the crystalline ultra-high k dielectric material, and/or may include an amorphous region between the crystalline ultra-high k dielectric material and the control gate material. Some embodiments include methods of forming memory cells which contain an amorphous region between a charge-retaining region and a crystalline ultra-high k dielectric material, and/or which contain an amorphous region between a crystalline ultra-high k dielectric material and a control gate material.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Noel Rocklein, Kyu S. Min
  • Publication number: 20110067629
    Abstract: Methods and devices for controlling a growth rate of films in semiconductor structures are shown. Chemical vapor deposition methods and devices include the use of a reaction inhibitor that selectively varies a deposition rate along a surface. One specific method includes atomic layer deposition. One method shown provides high step coverage over features such as trenches in trench plate capacitors. Also shown are methods and devices to provide uniform batch reactor layer thicknesses. Also shown are methods for forming alloy layers with high control over composition. Also shown are methods to selectively control growth rate to provide growth only on selected surfaces.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Inventors: M. Noel Rocklein, F. Daniel Gealy
  • Publication number: 20110020999
    Abstract: Some embodiments include dielectric structures. The structures include first and second portions that are directly against one another. The first portion may contain a homogeneous mixture of a first phase and a second phase. The first phase may have a dielectric constant of greater than or equal to 25, and the second phase may have a dielectric constant of less than or equal to 20. The second portion may be entirely a single composition having a dielectric constant of greater than or equal to 25. Some embodiments include electrical components, such as capacitors and transistors, containing dielectric structures of the type described above. Some embodiments include methods of forming dielectric structures, and some embodiments include methods of forming electrical components.
    Type: Application
    Filed: September 30, 2010
    Publication date: January 27, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Noel Rocklein, Chris M. Carlson, Dave Peterson, Cunyu Yang, Praveen Vaidyanathan, Vishwanath Bhat
  • Patent number: 7863198
    Abstract: Methods and devices for controlling a growth rate of films in semiconductor structures are shown. Chemical vapor deposition methods and devices include the use of a reaction inhibitor that selectively varies a deposition rate along a surface. One specific method includes atomic layer deposition. One method shown provides high step coverage over features such as trenches in trench plate capacitors. Also shown are methods and devices to provide uniform batch reactor layer thicknesses. Also shown are methods for forming alloy layers with high control over composition. Also shown are methods to selectively control growth rate to provide growth only on selected surfaces.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: January 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: M. Noel Rocklein, F. Daniel Gealy
  • Publication number: 20100315760
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jeff Hully, Chris Carlson
  • Publication number: 20100316793
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jef Hall, Chris Carlson
  • Patent number: 7820506
    Abstract: Some embodiments include dielectric structures. The structures include first and second portions that are directly against one another. The first portion may contain a homogeneous mixture of a first phase and a second phase. The first phase may have a dielectric constant of greater than or equal to 25, and the second phase may have a dielectric constant of less than or equal to 20. The second portion may be entirely a single composition having a dielectric constant of greater than or equal to 25. Some embodiments include electrical components, such as capacitors and transistors, containing dielectric structures of the type described above. Some embodiments include methods of forming dielectric structures, and some embodiments include methods of forming electrical components.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: October 26, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Noel Rocklein, Chris M. Carlson, Dave Peterson, Cunyu Yang, Praveen Vaidyanathan, Vishwanath Bhat
  • Publication number: 20100176432
    Abstract: Some embodiments include memory cells. The memory cells may include a tunnel dielectric material, a charge-retaining region over the tunnel dielectric material, crystalline ultra-high k dielectric material over the charge-retaining region, and a control gate material over the crystalline ultra-high k dielectric material. Additionally, the memory cells may include an amorphous region between the charge-retaining region and the crystalline ultra-high k dielectric material, and/or may include an amorphous region between the crystalline ultra-high k dielectric material and the control gate material. Some embodiments include methods of forming memory cells which contain an amorphous region between a charge-retaining region and a crystalline ultra-high k dielectric material, and/or which contain an amorphous region between a crystalline ultra-high k dielectric material and a control gate material.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 15, 2010
    Inventors: D.V. Nirmal Ramaswamy, Noel Rocklein, Kyu S. Min
  • Publication number: 20100090309
    Abstract: Some embodiments include dielectric structures. The structures include first and second portions that are directly against one another. The first portion may contain a homogeneous mixture of a first phase and a second phase. The first phase may have a dielectric constant of greater than or equal to 25, and the second phase may have a dielectric constant of less than or equal to 20. The second portion may be entirely a single composition having a dielectric constant of greater than or equal to 25. Some embodiments include electrical components, such as capacitors and transistors, containing dielectric structures of the type described above. Some embodiments include methods of forming dielectric structures, and some embodiments include methods of forming electrical components.
    Type: Application
    Filed: October 15, 2008
    Publication date: April 15, 2010
    Inventors: Noel Rocklein, Chris M. Carlson, Dave Peterson, Cunyu Yang, Praveen Vaidyanathan, Vishwanath Bhat
  • Patent number: 7635623
    Abstract: A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: December 22, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Noel Rocklein, F. Daniel Gealy
  • Publication number: 20090273058
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein