Patents by Inventor Paolo Fantini

Paolo Fantini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220415392
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder of a memory device may include transistors in a first layer between a memory array and a second layer that includes one or more components associated with the memory array. The second layer may include CMOS pre-decoding circuitry, among other components. The decoder may include CMOS transistors in the first layer. The CMOS transistors may control which voltage source is coupled with an access line based on a gate voltage applied to a p-type transistor and a n-type transistor. For example, a first gate voltage applied to a p-type transistor may couple a source node with the access line and bias the access line to a source voltage. A second gate voltage applied to the n-type transistor may couple a ground node with the access line and bias the access line to a ground voltage.
    Type: Application
    Filed: July 27, 2022
    Publication date: December 29, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer, Thomas M. Graettinger
  • Publication number: 20220392527
    Abstract: Methods, systems, and devices for voltage equalization for pillars of a memory array are described. In some examples, a memory array may be configured with conductive pillars that are each coupled with a respective set of memory cells, and may be selectively coupled with an access line. To support a dissipation or equalization of charge from unselected pillars, the memory array may be configured with a material layer or level that provides a dissipative coupling, such as a coupling having a relatively high resistance or a degree of capacitance, with a ground voltage or other voltage source (e.g., to support a passive equalization). Additionally, or alternatively, a memory array may be configured to support an active dissipation of accumulated charge or voltage by selectively coupling pillars that have been operated in a floating condition with a ground voltage or other voltage source (e.g., to perform a dynamic equalization).
    Type: Application
    Filed: August 4, 2022
    Publication date: December 8, 2022
    Inventors: Corrado Villa, Ferdinando Bedeschi, Paolo Fantini
  • Publication number: 20220384722
    Abstract: Methods, systems, and devices for a memory device with laterally formed memory cells are described. A material stack that includes a conductive layer between multiple dielectric layers may be formed, where the conductive layer and dielectric layers may form a channel in a sidewall of the material stack. The channel may be filled with one or more materials, where a first side of an outermost material of the one or more materials may be exposed. An opening may be formed in the material stack that exposes a second side of at least one material of the one or more materials. The opening may be used to replace a portion of the at least one material with a chalcogenide material where the electrode materials may be formed before replacing the portion of the at least one material with the chalcogenide material.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Thomas M. Graettinger, Lorenzo Fratin, Patrick M. Flynn, Enrico Varesi, Paolo Fantini
  • Publication number: 20220384719
    Abstract: Methods, systems, and devices for techniques for memory cells with sidewall and bulk regions in vertical structures are described. A memory cell may include a first electrode, a second electrode, and a self-selecting storage element between the first electrode and the second electrode. The bulk region may extend between the first electrode and the sidewall region. The bulk region may include a chalcogenide material having a first composition, and the sidewall region may include the chalcogenide material having a second composition that is different than the first composition. Also, the sidewall region may separate the bulk region from the second electrode.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20220384720
    Abstract: Methods, systems, and devices for techniques for memory cells with sidewall and bulk regions in planar structures are described. A memory cell may include a first electrode, a second electrode, and a self-selecting storage element between the first electrode and the second electrode. A conductive path between the first electrode and the second electrode may extend in a direction away from a plane defined by a substrate. The self-selecting storage element may include a bulk region and a sidewall region. The bulk region may include a chalcogenide material having a first composition, and the sidewall region may include the chalcogenide material having a second composition that is different than the first composition. The bulk region and sidewall region may extend between the first electrode and the second electrode and in the direction away from the plane defined by the substrate.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20220384723
    Abstract: Methods, systems, and devices for techniques that support sidewall structures for memory cells in vertical structures are described. A memory cell may include a first electrode, a second electrode, and a self-selecting storage element between the first electrode and the second electrode. The self-selecting storage element may extend between the first electrode and the second electrode in a direction that is parallel with a plane defined by the substrate. The self-selecting storage element may also include a bulk region and a sidewall region. The bulk region may include a chalcogenide material having a first composition, and the sidewall region may include the chalcogenide material having a second composition that is different than the first composition. Also, the sidewall region may extend between the first electrode and the second electrode.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Enrico Varesi
  • Publication number: 20220366983
    Abstract: The present disclosure provides a memory apparatus and a method for accessing a 3D vertical memory array. The 3D vertical memory array comprises word lines organized in planes separated from each other by insulating material, bit lines perpendicular to the word line planes, memory cells coupled between a respective word line and a respective bit line. The apparatus also comprises a controller configured to select multiple word lines, select multiple bit lines, and simultaneously access multiple memory cells, with each memory cell at a crossing of a selected word line and a selected bit line. The method comprises selecting a multiple word lines, selecting multiple bit lines and simultaneously accessing multiple memory cells, with each memory cell at a crossing of a selected word line of the selected multiple word lines and a selected bit line of the selected multiple bit lines. A method of manufacturing a 3D vertical memory array is also described.
    Type: Application
    Filed: December 9, 2020
    Publication date: November 17, 2022
    Inventors: Paolo Fantini, Corrado Villa, Stefan Frederik Schippers, Lorenzo Fratin
  • Publication number: 20220335997
    Abstract: Methods, systems, and devices for a decoding architecture for memory devices are described. Word line plates of a memory array may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. Memory cells coupled with a word line plate, or a subset thereof, may represent a logical page for accessing memory cells. Each word line plate may be coupled with a corresponding word line driver via a respective electrode. A memory cell may be accessed via a first voltage applied to a word line plate coupled with the memory cell and a second voltage applied to a pillar electrode coupled with the memory cell. Parallel or simultaneous access operations may be performed for two or more memory cells within a same page of memory cells.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Inventors: Paolo Fantini, Lorenzo Fratin, Fabio Pellizzer, Enrico Varesi
  • Publication number: 20220336005
    Abstract: Methods, systems, and devices for a decoding architecture for memory devices are described. Word line plates of a memory array may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. Two word line plates in a same plane may be activated via a shared electrode. Memory cells coupled with the two word line plates sharing the electrode, or a subset thereof, may represent a logical page for accessing memory cells. A memory cell may be accessed via a first voltage applied to a word line plate coupled with the memory cell and a second voltage applied to a pillar electrode coupled with the memory cell. Parallel or simultaneous access operations may be performed for two or more memory cells within a same page of memory cells.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Inventors: Paolo Fantini, Enrico Varesi, Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20220336015
    Abstract: Methods, systems, and devices for decoding architecture for memory tiles are described. Word line tiles of a memory array may each include multiple word line plates, which may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. A pillar tile may include one or more pillars that extend vertically between the word line plate fingers. Memory cells may each be couple with a respective word line plate finger and a respective pillar. Word line decoding circuitry, pillar decoding circuitry, or both, may be located beneath the memory array and in some cases may be shared between adjacent pillar tiles.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Inventors: Paolo Fantini, Andrea Martinelli, Claudio Nava
  • Patent number: 11475947
    Abstract: Methods, systems, and devices for decoding architecture for memory tiles are described. Word line tiles of a memory array may each include multiple word line plates, which may each include a sheet of conductive material that includes a first portion extending in a first direction within a plane along with multiple fingers extending in a second direction within the plane. A pillar tile may include one or more pillars that extend vertically between the word line plate fingers. Memory cells may each be couple with a respective word line plate finger and a respective pillar. Word line decoding circuitry, pillar decoding circuitry, or both, may be located beneath the memory array and in some cases may be shared between adjacent pillar tiles.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Andrea Martinelli, Claudio Nava
  • Publication number: 20220302210
    Abstract: Methods for, apparatuses with and vertical 3D memory devices are described. A vertical 3D memory device may comprise: a plurality of contacts associated with a plurality of digit lines and extending through a substrate; a plurality of word line plates separated from one another by respective dielectric layers and including a first plurality of word line plates and a second plurality of word line plates; a first dielectric material positioned between the first plurality and the second plurality of word line plates, the first dielectric material extending in a serpentine shape over the substrate; a conformal material positioned between the first dielectric material and the first and second plurality of word line plates, respectively; a plurality of spacers; a plurality of pillars coupled with the plurality of contacts; and a plurality of storage elements each comprising chalcogenide material positioned in a recess.
    Type: Application
    Filed: July 22, 2020
    Publication date: September 22, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer
  • Publication number: 20220298359
    Abstract: An ionic liquid-based composition for protecting lithium metal anodes in a lithium-based electrochemical energy storage system, comprising a polymerizable ionic liquid (or ionic liquid monomer), the cation or the anion of which carries at least one polymerizable function, a non-polymerizable ionic liquid, an ionic liquid of the “crosslinker” type, the cation or the anion of which carries at least two polymerizable functions, and a lithium salt. This composition is then coated and polymerized onto a metallic lithium surface and serves as protection layer. The ionic liquid-based polymer composition coated as such on the lithium surface, even if it is swelling with liquid electrolyte, protects the lithium against a constant electrolyte consumption and formation of unstable solid-electrolyte interphase (SEI), which is continuously forming on a bare lithium surface. The growing of dendrites is retarded with such ionic liquid-based polymer composition protection.
    Type: Application
    Filed: July 31, 2020
    Publication date: September 22, 2022
    Inventors: Paolo Fantini, Rongying Lin, François Malbosc, Alen Vizintin, Cecilia Andrea Calderon, Robert Dominko
  • Publication number: 20220302211
    Abstract: Methods for, apparatuses with, and vertical 3D memory devices are described. A vertical 3D memory device may comprise: a plurality of contacts associated with a plurality of digit lines and extending through a substrate; a plurality of word line plates separated from one another by respective dielectric layers and including a first plurality of word line plates and a second plurality of word line plates; a dielectric material positioned between the first plurality and the second plurality of word line plates, the dielectric material extending in a serpentine shape over the substrate; a plurality of pillars formed over and coupled with the plurality of contacts; and a plurality of storage elements each comprising chalcogenide material positioned in a recess between a respective word line plate and a respective pillar, wherein the recess is of an arch-shape, and the chalcogenide material in the recess contacts the respective word line plate.
    Type: Application
    Filed: July 22, 2020
    Publication date: September 22, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer
  • Patent number: 11437097
    Abstract: Methods, systems, and devices for voltage equalization for pillars of a memory array are described. In some examples, a memory array may be configured with conductive pillars that are each coupled with a respective set of memory cells, and may be selectively coupled with an access line. To support a dissipation or equalization of charge from unselected pillars, the memory array may be configured with a material layer or level that provides a dissipative coupling, such as a coupling having a relatively high resistance or a degree of capacitance, with a ground voltage or other voltage source (e.g., to support a passive equalization). Additionally or alternatively, a memory array may be configured to support an active dissipation of accumulated charge or voltage by selectively coupling pillars that have been operated in a floating condition with a ground voltage or other voltage source (e.g., to perform a dynamic equalization).
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: September 6, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Corrado Villa, Ferdinando Bedeschi, Paolo Fantini
  • Patent number: 11423981
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder may include a first vertical n-type transistor and a second vertical n-type transistor that extends in a third direction relative to a die of a memory array. The first vertical n-type transistor may be configured to selectively couple an access line with a source node and the second n-type transistor may be configured to selectively couple the access line with a ground node. To activate the access line coupled with the first and second vertical n-type transistors, the first vertical n-type transistor may be activated, the second vertical n-type transistor may be deactivated, and the source node coupled with the first vertical n-type transistor may have a voltage applied that differs from a ground voltage.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: August 23, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Paolo Fantini, Lorenzo Fratin, Fabio Pellizzer
  • Patent number: 11417394
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder of a memory device may include transistors in a first layer between a memory array and a second layer that includes one or more components associated with the memory array. The second layer may include CMOS pre-decoding circuitry, among other components. The decoder may include CMOS transistors in the first layer. The CMOS transistors may control which voltage source is coupled with an access line based on a gate voltage applied to a p-type transistor and a n-type transistor. For example, a first gate voltage applied to a p-type transistor may couple a source node with the access line and bias the access line to a source voltage. A second gate voltage applied to the n-type transistor may couple a ground node with the access line and bias the access line to a ground voltage.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: August 16, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer, Thomas M. Graettinger
  • Publication number: 20220208602
    Abstract: Architectures of 3D memory arrays, systems, and methods regarding the same are described. An array may include a substrate arranged with conductive contacts in a geometric pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, a sacrificial layer may be deposited in a trench that forms a serpentine shape. Portions of the sacrificial layer may be removed to form openings, into which cell material is deposited. An insulative material may be formed in contact with the sacrificial layer. The conductive pillars extend substantially perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. A chalcogenide material may be formed in the recesses partially around the conductive pillars.
    Type: Application
    Filed: January 11, 2022
    Publication date: June 30, 2022
    Inventors: Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20220189548
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder may include a first vertical n-type transistor and a second vertical n-type transistor that extends in a third direction relative to a die of a memory array. The first vertical n-type transistor may be configured to selectively couple an access line with a source node and the second n-type transistor may be configured to selectively couple the access line with a ground node. To activate the access line coupled with the first and second vertical n-type transistors, the first vertical n-type transistor may be activated, the second vertical n-type transistor may be deactivated, and the source node coupled with the first vertical n-type transistor may have a voltage applied that differs from a ground voltage.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 16, 2022
    Inventors: Paolo Fantini, Lorenzo Fratin, Fabio Pellizzer
  • Publication number: 20220189549
    Abstract: Methods, systems, and devices for decoding for a memory device are described. A decoder of a memory device may include transistors in a first layer between a memory array and a second layer that includes one or more components associated with the memory array. The second layer may include CMOS pre-decoding circuitry, among other components. The decoder may include CMOS transistors in the first layer. The CMOS transistors may control which voltage source is coupled with an access line based on a gate voltage applied to a p-type transistor and a n-type transistor. For example, a first gate voltage applied to a p-type transistor may couple a source node with the access line and bias the access line to a source voltage. A second gate voltage applied to the n-type transistor may couple a ground node with the access line and bias the access line to a ground voltage.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 16, 2022
    Inventors: Lorenzo Fratin, Paolo Fantini, Fabio Pellizzer, Thomas M. Graettinger