Patents by Inventor Peter Almern Losee

Peter Almern Losee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11233157
    Abstract: A charge balance (CB) field-effect transistor (FET) device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a set of CB regions having a second conductivity type. The CB FET device may further include a device layer defined in a device epi layer having the first conductivity type disposed on the CB layer. The device layer may include a highly-doped region having the second conductivity type. The CB FET device may also include a CB bus region having the second conductivity type that extends between and electrically couples a CB region of the set of CB regions of the CB layer to the highly-doped region of the device layer.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 25, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20210288180
    Abstract: A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 16, 2021
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 11069772
    Abstract: Aspects of the present disclosure are directed toward designs and methods of manufacturing semiconductor devices, such as semiconductor charge balanced (CB) devices or semiconductor super-junction (SJ) devices. The disclosed designs and methods are useful in the manufacture of CB devices, such as planar CB metal-oxide semiconductor field-effect transistor (MOSFET) devices, as well as other devices.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 20, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Reza Ghandi, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 11063115
    Abstract: Embodiments of a semiconductor device and methods of forming thereof are provided herein. In some embodiments, a power semiconductor device may include a first layer having a first conductivity type; a second layer disposed atop the first layer, the second layer having the first conductivity type; a termination region formed in the second layer, the termination region having a second conductivity type opposite the first type; and an active region at least partially formed in the second layer, wherein the active region is disposed adjacent to the termination region proximate a first side of the termination region and wherein the second layer is at least partially disposed adjacent to the termination region proximate a second side of the termination region opposite the first side.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: July 13, 2021
    Assignee: General Electric Company
    Inventors: Peter Almern Losee, Alexander Viktorovich Bolotnikov, Yang Sui
  • Patent number: 11031472
    Abstract: A silicon carbide (SiC) semiconductor device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a plurality of CB regions having a second conductivity type. The SiC semiconductor device may further include a device epi layer having the first conductivity type disposed on the CB layer. The device epi layer may include a plurality of regions having the second conductivity type. Additionally, the SiC semiconductor device may include an ohmic contact disposed on the device epi layer and a rectifying contact disposed on the device epi layer. A field-effect transistor (FET) of the device may include the ohmic contact, and a diode of the device may include the rectifying contact, where the diode and the FET are integrated in the device.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: June 8, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Almern Losee, Reza Ghandi, Alexander Viktorovich Bolotnikov
  • Patent number: 10955297
    Abstract: A system for monitoring a junction temperature of a semiconductor device includes a sensing resistor electrically coupled to a source terminal of the semiconductor device in a gate loop of the semiconductor device. The system includes a detection circuit electrically coupled to the gate loop of the semiconductor device and configured to measure a voltage difference across the sensing resistor. The system also includes an electronic control unit electrically coupled to the gate loop and the detection circuit. The electronic control unit is configured to determine a first gate current peak during a switching process of the semiconductor device, wherein the first gate current peak is determined based on the voltage detected by the detection circuit. The electronic control unit is configured to determine the junction temperature based on the first gate current peak.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 23, 2021
    Assignee: General Electric Company
    Inventors: Ruxi Wang, Peter Almern Losee, Juan Antonio Sabate, Krishna Mainali, Tomas Sadilek
  • Patent number: 10957759
    Abstract: A silicon carbide (SiC) charge balance (CB) device includes a CB layer, which includes a first epitaxial (epi) layer. An active area of the first epi layer includes a first doping concentration of a first conductivity type and a first plurality of CB regions of a second conductivity type. A termination area of the first epi layer includes a minimized epi doping concentration of the first conductivity type. The SiC—CB device also includes a device layer, which includes a second epi layer disposed on the CB layer. An active area of the second epi layer includes the first doping concentration of the first conductivity type. A termination area of the device layer includes the minimized epi doping concentration of the first conductivity type and a first plurality of floating regions of the second conductivity type that form a junction termination of the device.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 23, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Reza Ghandi, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10937870
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to shielding regions in the form of body region extensions for that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed body region extensions have the same conductivity-type as the body region and extend outwardly from the body region and into the JFET region of a first device cell such that a distance between the body region extension and a region of a neighboring device cell having the same conductivity type is less than or equal to the parallel JFET width. The disclosed shielding regions enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: March 2, 2021
    Assignee: General Electric Company
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20200258985
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to shielding regions in the form of body region extensions for that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed body region extensions have the same conductivity-type as the body region and extend outwardly from the body region and into the JFET region of a first device cell such that a distance between the body region extension and a region of a neighboring device cell having the same conductivity type is less than or equal to the parallel JFET width. The disclosed shielding regions enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Application
    Filed: February 12, 2020
    Publication date: August 13, 2020
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20200212182
    Abstract: A silicon carbide (SiC) semiconductor device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a plurality of CB regions having a second conductivity type. The SiC semiconductor device may further include a device epi layer having the first conductivity type disposed on the CB layer. The device epi layer may include a plurality of regions having the second conductivity type. Additionally, the SiC semiconductor device may include an ohmic contact disposed on the device epi layer and a rectifying contact disposed on the device epi layer. A field-effect transistor (FET) of the device may include the ohmic contact, and a diode of the device may include the rectifying contact, where the diode and the FET are integrated in the device.
    Type: Application
    Filed: February 21, 2019
    Publication date: July 2, 2020
    Inventors: Peter Almern Losee, Reza Ghandi, Alexander Viktorovich Bolotnikov
  • Publication number: 20200203487
    Abstract: A silicon carbide (SiC) charge balance (CB) device includes a CB layer, which includes a first epitaxial (epi) layer. An active area of the first epi layer includes a first doping concentration of a first conductivity type and a first plurality of CB regions of a second conductivity type. A termination area of the first epi layer includes a minimized epi doping concentration of the first conductivity type. The SiC—CB device also includes a device layer, which includes a second epi layer disposed on the CB layer. An active area of the second epi layer includes the first doping concentration of the first conductivity type. A termination area of the device layer includes the minimized epi doping concentration of the first conductivity type and a first plurality of floating regions of the second conductivity type that form a junction termination of the device.
    Type: Application
    Filed: December 28, 2018
    Publication date: June 25, 2020
    Inventors: Stephen Daley Arthur, Reza Ghandi, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20200194546
    Abstract: Aspects of the present disclosure are directed toward designs and methods of manufacturing semiconductor devices, such as semiconductor charge balanced (CB) devices or semiconductor super-junction (SJ) devices. The disclosed designs and methods are useful in the manufacture of CB devices, such as planar CB metal-oxide semiconductor field-effect transistor (MOSFET) devices, as well as other devices.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Stephen Daley Arthur, Reza Ghandi, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20200185493
    Abstract: Embodiments of a semiconductor device and methods of forming thereof are provided herein. In some embodiments, a power semiconductor device may include a first layer having a first conductivity type; a second layer disposed atop the first layer, the second layer having the first conductivity type; a termination region formed in the second layer, the termination region having a second conductivity type opposite the first type; and an active region at least partially formed in the second layer, wherein the active region is disposed adjacent to the termination region proximate a first side of the termination region and wherein the second layer is at least partially disposed adjacent to the termination region proximate a second side of the termination region opposite the first side.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Peter Almern Losee, Alexander Viktorovich Bolotnikov, Yang Sui
  • Patent number: 10636660
    Abstract: To manufacture a super-junction (SJ) layer of a SJ device, an epitaxial (epi) layer having a first conductivity type may be formed on an underlying layer, which may be formed from a wide-bandgap material. A first mask may then be formed onto a first portion of the epi layer, and a first set of SJ pillars may be selectively implanted into a second portion of the epi layer exposed by the first mask. Then, a second mask may be formed on the second portion of the epi layer that is self-aligned relative to the first mask. After removing the first mask, a second set of SJ pillars may be selectively implanted into the first portion of the epi layer. Removing the second mask may then yield the SJ layer.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 28, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reza Ghandi, Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld
  • Publication number: 20200105925
    Abstract: A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20200105944
    Abstract: A charge balance (CB) field-effect transistor (FET) device may include a CB layer defined in a first epitaxial (epi) layer having a first conductivity type. The CB layer may include a set of CB regions having a second conductivity type. The CB FET device may further include a device layer defined in a device epi layer having the first conductivity type disposed on the CB layer. The device layer may include a highly-doped region having the second conductivity type. The CB FET device may also include a CB bus region having the second conductivity type that extends between and electrically couples a CB region of the set of CB regions of the CB layer to the highly-doped region of the device layer.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Stephen Daley Arthur, Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20200105529
    Abstract: To manufacture a super-junction (SJ) layer of a SJ device, an epitaxial (epi) layer having a first conductivity type may be formed on an underlying layer, which may be formed from a wide-bandgap material. A first mask may then be formed onto a first portion of the epi layer, and a first set of SJ pillars may be selectively implanted into a second portion of the epi layer exposed by the first mask. Then, a second mask may be formed on the second portion of the epi layer that is self-aligned relative to the first mask. After removing the first mask, a second set of SJ pillars may be selectively implanted into the first portion of the epi layer. Removing the second mask may then yield the SJ layer.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 2, 2020
    Inventors: Reza Ghandi, Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld
  • Patent number: 10608079
    Abstract: An integrated circuit includes a silicon carbide (SiC) epitaxial layer disposed on a SiC layer, wherein the SiC epitaxial layer has a first conductivity-type and the SiC layer has a second conductivity-type that is opposite to the first conductivity-type. The integrated circuit also includes a junction isolation feature disposed in the SiC epitaxial layer and having the second conductivity-type. The junction isolation feature extends vertically through a thickness of the SiC epitaxial layer and contacts the SiC layer, and wherein the junction isolation feature has a depth of at least about 2 micrometers (?m).
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: March 31, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reza Ghandi, David Alan Lilienfeld, Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 10600871
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to shielding regions in the form of body region extensions for that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed body region extensions have the same conductivity-type as the body region and extend outwardly from the body region and into the JFET region of a first device cell such that a distance between the body region extension and a region of a neighboring device cell having the same conductivity type is less than or equal to the parallel JFET width. The disclosed shielding regions enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: March 24, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 10600649
    Abstract: A method of manufacturing a semiconductor device including performing a first implantation in a semiconductor layer via ion implantation forming a first implantation region and performing a second implantation in the semiconductor layer via ion implantation forming a second implantation region. The first and second implantation overlap with one another and combine to form a connection region extending into the semiconductor layer by a predefined depth.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 24, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, Reza Ghandi, David Alan Lilienfeld