Patents by Inventor Peter Almern Losee

Peter Almern Losee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180337273
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor device layer having silicon carbide and having an upper surface and a lower surface. The semiconductor device also includes a heavily doped body region formed in the upper surface of the semiconductor device layer. The semiconductor device further includes a gate stack formed adjacent to and on top of the upper surface of the semiconductor device layer, wherein the gate stack is not formed adjacent to the heavily doped body region.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 22, 2018
    Inventors: Peter Almern Losee, Alexander Bolotnikov, Stacey Joy Kennerly, James William Kretchmer
  • Patent number: 10096681
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to disconnected or connected shielding regions that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed shielding regions occupy a widest portion of the JFET region between adjacent device cells such that a distance between a shielding region and well regions surrounding device cell is less than a parallel JFET width between two adjacent device cells, while maintaining a channel region width and/or a JFET region density that is greater than that of a comparable conventional stripe device. As such, the disclosed shielding regions and device layouts enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: October 9, 2018
    Assignee: General Electric Company
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 10056457
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to shielding regions in the form of channel region extensions for that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed channel region extensions have the same conductivity-type as the channel region and extend outwardly from the channel region and into the JFET region of a first device cell such that a distance between the channel region extension and a region of a neighboring device cell having the same conductivity type is less than or equal to the parallel JFET width. The disclosed shielding regions enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: August 21, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 10002920
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 19, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20180166531
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 9997507
    Abstract: A monolithically integrated semiconductor assembly is presented. The semiconductor assembly includes a substrate including silicon (Si), and gallium nitride (GaN) semiconductor device is fabricated on the substrate. The semiconductor assembly further includes at least one transient voltage suppressor (TVS) structure fabricated in or on the substrate, wherein the TVS structure is in electrical contact with the GaN semiconductor device. The TVS structure is configured to operate in a punch-through mode, an avalanche mode, or combinations thereof, when an applied voltage across the GaN semiconductor device is greater than a threshold voltage. Methods of making a monolithically integrated semiconductor assembly are also presented.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, Peter Micah Sandvik, Rui Zhou, Peter Almern Losee
  • Patent number: 9899512
    Abstract: Embodiments of a silicon carbide (SiC) device are provided herein. In some embodiments, a silicon carbide (SiC) device may include a gate electrode disposed above a SiC semiconductor layer, wherein the SiC semiconductor layer comprises: a drift region having a first conductivity type; a well region disposed adjacent to the drift region, wherein the well region has a second conductivity type; and a source region having the first conductivity type disposed adjacent to the well region, wherein the source region comprises a source contact region and a pinch region, wherein the pinch region is disposed only partially below the gate electrode, wherein a sheet doping density in the pinch region is less than 2.5×1014 cm?2, and wherein the pinch region is configured to deplete at a current density greater than a nominal current density of the SiC device to increase the resistance of the source region.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: February 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Almern Losee, Ljubisa Dragoljub Stevanovic, Gregory Thomas Dunne, Alexander Viktorovich Bolotnikov
  • Publication number: 20170345890
    Abstract: Embodiments of a semiconductor device and methods of forming thereof are provided herein. In some embodiments, a power semiconductor device may include a first layer having a first conductivity type; a second layer disposed atop the first layer, the second layer having the first conductivity type; a termination region formed in the second layer, the termination region having a second conductivity type opposite the first type; and an active region at least partially formed in the second layer, wherein the active region is disposed adjacent to the termination region proximate a first side of the termination region and wherein the second layer is at least partially disposed adjacent to the termination region proximate a second side of the termination region opposite the first side.
    Type: Application
    Filed: May 26, 2016
    Publication date: November 30, 2017
    Inventors: Peter Almern Losee, Alexander Viktorovich Bolotnikov, Yang Sui
  • Publication number: 20170338313
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to disconnected or connected shielding regions that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed shielding regions occupy a widest portion of the JFET region between adjacent device cells such that a distance between a shielding region and well regions surrounding device cell is less than a parallel JFET width between two adjacent device cells, while maintaining a channel region width and/or a JFET region density that is greater than that of a comparable conventional stripe device. As such, the disclosed shielding regions and device layouts enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 23, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20170338303
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices. In particular, the present disclosure relates to shielding regions for use in combination with an optimization layer. The disclosed shielding regions reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed shielding regions occupy a portion of the JFET region between adjacent device cells and interrupt the continuity of the optimization layer in a widest portion of the JFET region, where the corners of neighboring device cells meet. The disclosed shielding regions and device layouts enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Application
    Filed: May 22, 2017
    Publication date: November 23, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20170338300
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to shielding regions in the form of channel region extensions for that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed channel region extensions have the same conductivity-type as the channel region and extend outwardly from the channel region and into the JFET region of a first device cell such that a distance between the channel region extension and a region of a neighboring device cell having the same conductivity type is less than or equal to the parallel JFET width. The disclosed shielding regions enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Application
    Filed: May 15, 2017
    Publication date: November 23, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20170338314
    Abstract: The subject matter disclosed herein relates to semiconductor power devices, such as silicon carbide (SiC) power devices. In particular, the subject matter disclosed herein relates to shielding regions in the form of body region extensions for that reduce the electric field present between the well regions of neighboring device cells of a semiconductor device under reverse bias. The disclosed body region extensions have the same conductivity-type as the body region and extend outwardly from the body region and into the JFET region of a first device cell such that a distance between the body region extension and a region of a neighboring device cell having the same conductivity type is less than or equal to the parallel JFET width. The disclosed shielding regions enable superior performance relative to a conventional stripe device of comparable dimensions, while still providing similar reliability (e.g., long-term, high-temperature stability at reverse bias).
    Type: Application
    Filed: May 15, 2017
    Publication date: November 23, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20170278924
    Abstract: A super junction (SJ) device may include one or more charge balance (CB) layers. Each CB layer may include an epitaxial (epi) layer having a first conductivity type and a plurality of charge balance (CB) regions having a second conductivity type. Additionally, the SJ device may include a connection region having the second conductivity type that extends from a region disposed in a top surface of a device layer of the SJ device to one or more of the CB regions. The connection region may enable carriers to flow directly from the region to the one or more CB regions, which may decrease switching losses of the SJ device.
    Type: Application
    Filed: March 22, 2016
    Publication date: September 28, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, Reza Ghandi
  • Patent number: 9748341
    Abstract: A semiconductor device includes a drift layer disposed on a substrate. The drift layer has a non-planar surface having a plurality of repeating features oriented parallel to a length of a channel of the semiconductor device. Further, each the repeating features have a dopant concentration higher than a remainder of the drift layer.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: August 29, 2017
    Assignee: General Electric Company
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Publication number: 20170243970
    Abstract: Embodiments of a silicon carbide (SiC) device are provided herein. In some embodiments, a silicon carbide (SiC) device may include a gate electrode disposed above a SiC semiconductor layer, wherein the SiC semiconductor layer comprises: a drift region having a first conductivity type; a well region disposed adjacent to the drift region, wherein the well region has a second conductivity type; and a source region having the first conductivity type disposed adjacent to the well region, wherein the source region comprises a source contact region and a pinch region, wherein the pinch region is disposed only partially below the gate electrode, wherein a sheet doping density in the pinch region is less than 2.5×1014 cm?2, and wherein the pinch region is configured to deplete at a current density greater than a nominal current density of the SiC device to increase the resistance of the source region.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventors: Peter Almern Losee, Ljubisa Dragoljub Stevanovic, Greg Thomas Dunne, Alexander Viktorovich Bolotnikov
  • Publication number: 20170243935
    Abstract: In one embodiment, a method of manufacturing a silicon-carbide (SiC) device includes receiving a selection of a specific terrestrial cosmic ray (TCR) rating at a specific applied voltage, determining a breakdown voltage for the SiC device based at least on the specific TCR rating at the specific applied voltage, determining drift layer design parameters based at least on the breakdown voltage. The drift layer design parameters include doping concentration and thickness of the drift layer. The method also includes fabricating the SiC device having a drift layer with the determined drift layer design parameters. The SiC device has the specific TCR rating at the specific applied voltage.
    Type: Application
    Filed: October 17, 2016
    Publication date: August 24, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Ljubisa Dragoljub Stevanovic, Peter Almern Losee
  • Patent number: 9735237
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to active area designs for SiC super-junction (SJ) power devices. A SiC-SJ device includes an active area having one or more charge balance (CB) layers. Each CB layer includes a semiconductor layer having a first conductivity-type and a plurality of floating regions having a second conductivity-type disposed in a surface of the semiconductor layer. The plurality of floating regions and the semiconductor layer are both configured to substantially deplete to provide substantially equal amounts of charge from ionized dopants when a reverse bias is applied to the SiC-SJ device.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 15, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Almern Losee, Alexander Viktorovich Bolotnikov, Reza Ghandi
  • Patent number: 9735263
    Abstract: An insulated gate field-effect transistor (IGFET) device includes a semiconductor body (200) and a gate oxide (234). The semiconductor body includes a first well region (216) doped with a first type of dopant and a second well region (220) that is doped with an opposite, second type of dopant and is located within the first well region. The gate oxide includes a relatively thinner outer section (244) and a relatively thicker interior section (246). The outer section is disposed over the first well region and the second well region. The interior section is disposed over a junction gate field effect transistor region (218) of the semiconductor body doped with the second type of dopant. A conductive channel is formed through the second well region when a gate signal is applied to a gate contact (250) disposed on the gate oxide.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: August 15, 2017
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Sean Matocha, Ramakrishna Rao, Peter Almern Losee, Alexander Viktorovich Bolotnikov
  • Patent number: 9716144
    Abstract: A semiconductor device may include a drift region having a first conductivity type, a source region having the first conductivity type, and a well region having a second conductivity type disposed adjacent to the drift region and adjacent to the source region. The well region may include a channel region that has the second conductivity type disposed adjacent to the source region and proximal to a surface of the semiconductor device cell. The channel region may include a non-uniform edge that includes at least one protrusion.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 25, 2017
    Assignee: General Electric Company
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 9704949
    Abstract: A charge-balanced (CB) diode may include one or more CB layers. Each CB layer may include an epitaxial layer having a first conductivity type and a plurality of buried regions having a second conductivity type. Additionally, the CB diode may include an upper epitaxial layer having the first conductivity type that is disposed adjacent to an uppermost CB layer of the one or more CB layers. The upper epitaxial layer may also include a plurality of junction barrier (JBS) implanted regions having the second conductivity type. Further, the CB diode may include a Schottky contact disposed adjacent to the upper epitaxial layer and the plurality of JBS implanted regions.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 11, 2017
    Assignee: General Electric Company
    Inventors: Reza Ghandi, Peter Almern Losee, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld