Patents by Inventor Peter L. G. Ventzek

Peter L. G. Ventzek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140124478
    Abstract: The present disclosure provides a plasma processing apparatus, including: a processing chamber; an oscillator configured to output high-frequency power; a power supply unit configured to supply the high-frequency power from a specific plasma generating location into the processing chamber; a magnetic field forming unit provided outside the processing chamber and configured to forming a magnetic field at least at the specific plasma generating location; and a control unit configured to control the magnetic field formed by the magnetic field forming unit such that a relationship between an electron collision frequency fe of plasma generated in the processing chamber and a cyclotron frequency fc is fc>fe.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 8, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun YOSHIKAWA, Yoshio SUSA, Naoki MATSUMOTO, Peter L. G. VENTZEK
  • Publication number: 20130157469
    Abstract: A top plate assembly is positioned above and spaced apart from the substrate support, such that a processing region exists between the top plate assembly and the substrate support. The top plate assembly includes a central plasma generation microchamber and a plurality of annular-shaped plasma generation microchambers positioned in a concentric manner about the central plasma generation microchamber. Adjacently positioned ones of the central and annular-shaped plasma generation microchambers are spaced apart from each other so as to form a number of axial exhaust vents therebetween. Each of the central and annular-shaped plasma generation microchambers is defined to generate a corresponding plasma therein and supply reactive constituents of its plasma to the processing region between the top plate assembly and the substrate support.
    Type: Application
    Filed: March 27, 2012
    Publication date: June 20, 2013
    Applicant: Lam Research Corporation
    Inventors: Akira Koshiishi, Peter L. G. Ventzek, Jun Shinagawa, John Patrick Holland
  • Publication number: 20130082030
    Abstract: The invention provides a plurality of resonator subsystems. The resonator subsystems can comprise one or more resonant cavities configured to couple electromagnetic (EM) energy in a desired EM wave mode to plasma by generating resonant microwave energy in a resonant cavity adjacent the plasma. The resonator subsystem can be coupled to a process chamber using one or more interface subsystems and can comprise one or more resonant cavities, and each resonant cavity can have a plurality of plasma tuning rods coupled thereto. Some of the plasma tuning rods can be configured to couple the EM-energy from one or more of the resonant cavities to the process space within the process chamber.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Jianping Zhao, Lee Chen, Merritt Funk, Toshihiko Iwao, Peter L.G. Ventzek
  • Publication number: 20130084706
    Abstract: The invention provides a plurality of Surface Wave Antenna (SWA) plasma sources. The SWA plasma sources can comprise one or more non-circular slot antennas, each having a plurality of plasma-tuning rods extending therethrough. Some of the plasma tuning rods can be configured to couple the electromagnetic (EM) energy from one or more of the non-circular slot antennas to the process space within the process chamber. The invention also provides SWA plasma sources that can comprise a plurality of resonant cavities, each having one or more plasma-tuning rods extending therefrom. Some of the plasma tuning rods can be configured to couple the EM energy from one or more of the resonant cavities to the process space within the process chamber.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: Tokyo Electron Limited
    Inventors: Jianping Zhao, Lee Chen, Merritt Funk, Toshihiko Iwao, Peter L.G. Ventzek
  • Publication number: 20130081762
    Abstract: The invention provides a plurality of plasma tuning rod subsystems. The plasma tuning rod subsystems can comprise one or more microwave cavities configured to couple electromagnetic (EM) energy in a desired EM wave mode to a plasma by generating resonant microwave energy in one or more plasma tuning rods within and/or adjacent to the plasma. One or more microwave cavity assemblies can be coupled to a process chamber, and can comprise one or more tuning spaces/cavities. Each tuning space/cavity can have one or more plasma tuning rods coupled thereto. Some of the plasma tuning rods can be configured to couple the EM energy from one or more of the resonant cavities to the process space within the process chamber and thereby create uniform plasma within the process space.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jianping Zhao, Lee Chen, Merritt Funk, Toshihiko Iwao, Peter L.G. Ventzek
  • Patent number: 8409459
    Abstract: A chamber component configured to be coupled to a processing chamber is described. The chamber component comprises one or more adjustable gas passages through which a process gas is introduced to the process chamber. The adjustable gas passage may be configured to form a hollow cathode that creates a hollow cathode plasma in a hollow cathode region having one or more plasma surfaces in contact with the hollow cathode plasma. Therein, at least one of the one or more plasma surfaces is movable in order to vary the size of the hollow cathode region and adjust the properties of the hollow cathode plasma. Furthermore, one or more adjustable hollow cathodes may be utilized to adjust a plasma process for treating a substrate.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 2, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kazuki Denpoh, Peter L G Ventzek, Lin Xu, Lee Chen
  • Publication number: 20120289053
    Abstract: A semiconductor substrate processing system includes a substrate support defined to support a substrate in exposure to a processing region. The system also includes a first plasma chamber defined to generate a first plasma and supply reactive constituents of the first plasma to the processing region. The system also includes a second plasma chamber defined to generate a second plasma and supply reactive constituents of the second plasma to the processing region. The first and second plasma chambers are defined to be independently controlled.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L.G. Ventzek, Harmeet Singh, Richard Gottscho
  • Publication number: 20120289054
    Abstract: A semiconductor substrate processing system includes a chamber that includes a processing region and a substrate support. The system includes a top plate assembly disposed within the chamber above the substrate support. The top plate assembly includes first and second sets of plasma microchambers each formed into the lower surface of the top plate assembly. A first network of gas supply channels are formed through the top plate assembly to flow a first process gas to the first set of plasma microchambers to be transformed into a first plasma. A set of exhaust channels are formed through the top plate assembly. The second set of plasma microchambers are formed inside the set of exhaust channels. A second network of gas supply channels are formed through the top plate assembly to flow a second process gas to the second set of plasma microchambers to be transformed into a second plasma.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L. G. Ventzek, Harmeet Singh, Richard Gottscho
  • Publication number: 20120255678
    Abstract: A hollow cathode system is provided for plasma generation in substrate plasma processing. The system includes a plurality of electrically conductive plates stacked in a layered manner. Dielectric sheets are disposed between each adjacently positioned pair of the plurality of electrically conductive plates. A number of holes are each formed to extend through the plurality of electrically conductive plates and dielectric sheets. The system also includes at least two independently controllable radiofrequency (RF) power sources electrically connected to one or more of the plurality of electrically conductive plates. The RF power sources are independently controllable with regard to frequency and amplitude.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L. G. Ventzek
  • Publication number: 20120258606
    Abstract: A semiconductor substrate processing system includes a processing chamber and a substrate support defined to support a substrate in the processing chamber. The system also includes a plasma chamber defined separate from the processing chamber. The plasma chamber is defined to generate a plasma. The system also includes a plurality of fluid transmission pathways fluidly connecting the plasma chamber to the processing chamber. The plurality of fluid transmission pathways are defined to supply reactive constituents of the plasma from the plasma chamber to the processing chamber. The system further includes an electron injection device for injecting electrons into the processing chamber to control an electron energy distribution within the processing chamber so as to in turn control an ion-to-radical density ratio within the processing chamber. In one embodiment, an electron beam source is defined to transmit an electron beam through the processing chamber above and across the substrate support.
    Type: Application
    Filed: January 24, 2012
    Publication date: October 11, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L. G. Ventzek, Harmeet Singh, Jun Shinagawa, Akira Koshiishi
  • Publication number: 20120258607
    Abstract: A semiconductor substrate processing system includes a processing chamber and a substrate support defined to support a substrate in the processing chamber. The system also includes a plasma chamber defined separate from the processing chamber. The plasma chamber is defined to generate a plasma. The system also includes a plurality of fluid transmission pathways fluidly connecting the plasma chamber to the processing chamber. The plurality of fluid transmission pathways are defined to supply reactive constituents of the plasma from the plasma chamber to the processing chamber. The system further includes a plurality of power delivery components defined to deliver power to the plurality of fluid transmission pathways, so as to generate supplemental plasma within the plurality of fluid transmission pathways. The plurality of fluid transmission pathways are defined to supply reactive constituents of the supplemental plasma to the processing chamber.
    Type: Application
    Filed: January 24, 2012
    Publication date: October 11, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L.G. Ventzek, Harmeet Singh, Jun Shinagawa, Akira Koshiishi
  • Publication number: 20120258555
    Abstract: A hollow cathode system is provided for plasma generation in substrate plasma processing. The system includes an electrically conductive member shaped to circumscribe an interior cavity, and formed to have a process gas inlet in fluid communication with the interior cavity, and formed to have an opening that exposes the interior cavity to a substrate processing region. The system also includes a first radiofrequency (RF) power source in electrical communication with the electrically conductive member so as to enable transmission of a first RF power to the electrically conductive member. The system further includes a second RF power source in electrical communication with the electrically conductive member so as to enable transmission of a second RF power to the electrically conductive member. The first and second RF power sources are independently controllable with regard to frequency and amplitude.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L. G. Ventzek
  • Publication number: 20120258601
    Abstract: A semiconductor substrate processing system includes a processing chamber and a substrate support defined to support a substrate in the processing chamber. The system also includes a plasma chamber defined separate from the processing chamber. The plasma chamber is defined to generate a plasma. The system also includes a plurality of fluid transmission pathways fluidly connecting the plasma chamber to the processing chamber. The plurality of fluid transmission pathways are defined to supply reactive constituents of the plasma from the plasma chamber to the processing chamber. The system further includes an electrode disposed within the processing chamber separate from the substrate support. The system also includes a power supply electrically connected to the electrode. The power supply is defined to supply electrical power to the electrode so as to liberate electrons from the electrode into the processing chamber.
    Type: Application
    Filed: January 24, 2012
    Publication date: October 11, 2012
    Applicant: Lam Research Corporation
    Inventors: John Patrick Holland, Peter L.G. Ventzek, Harmeet Singh, Jun Shinagawa, Akira Koshiishi
  • Patent number: 7772584
    Abstract: A semiconductor device has lateral conductors or traces that are formed of nanotubes such as carbon. A sacrificial layer is formed overlying the substrate. A dielectric layer is formed overlying the sacrificial layer. A lateral opening is formed by removing a portion of the dielectric layer and the sacrificial layer which is located between two columns of metallic catalysts. The lateral opening includes a neck portion and a cavity portion which is used as a constrained space to grow a nanotube. A plasma is used to apply electric charge that forms an electric field which controls the direction of formation of the nanotubes. Nanotubes from each column of metallic catalyst are laterally grown and either abut or merge into one nanotube. Contact to the nanotube may be made from either the neck portion or the columns of metallic catalysts.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 10, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Shahid Rauf, Peter L. G. Ventzek
  • Patent number: 7763551
    Abstract: Film thickness uniformity and stoichiometry are controlled and deposition rate is increased in the chemical vapor deposition (CVD) of silicon nitride from complex gas mixtures in microwave plasmas. In Si2H6+NH3+Ar gas mixtures using a radial line slot antenna (RLSA) microwave plasma to deposit SiN by CVD, deposition rate and film uniformity are improved by limiting the amounts of atomic or molecular hydrogen from the gas mixture during the deposition process. A halogen, for example, fluorine, is added to a gas mixture of silane or disilane, ammonia and argon. The halogen scavenges hydrogen from the mixture, and prevents the hydrogen from blocking the nitrogen and silicon atoms and their fragments from bonding to the surface atoms and to grow stoichiometric silicon nitride. Adding the halogen generates free halogen radicals that react with hydrogen to create hydrogen halide, for example, HF or HCl, thereby scavenging the hydrogen.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 27, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Jozef Brcka, Song Yun Kang, Toshio Nakanishi, Peter L. G. Ventzek, Minoru Honda, Masayuki Kohno
  • Patent number: 7751177
    Abstract: A method for forming a capacitor includes providing a metal-containing bottom electrode, forming a capacitor insulator over the metal-containing bottom electrode, forming a metal-containing top electrode over the capacitor insulator, and forming a dielectric-containing field modification layer over the capacitor insulator and at least partially surrounding the metal-containing top electrode. Forming the dielectric-containing field modification layer may include oxidizing a sidewall of the metal-containing field modification layer. A barrier layer may be formed over the capacitor insulator prior to forming the metal-containing top electrode.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 6, 2010
    Assignee: Freescale Semiconductor, Inc
    Inventors: Douglas R. Roberts, Eric D. Luckowski, Shahid Rauf, Peter L. G. Ventzek
  • Patent number: 7642193
    Abstract: A method of pre-treating a mask layer prior to etching an underlying thin film is described. A thin film, such as a dielectric film, is etched using plasma that is enhanced with a ballistic electron beam. In order to reduce the loss of pattern definition, such as line edge roughness effects, the mask layer is treated with an oxygen-containing plasma or halogen-containing plasma or a noble gas plasma or a combination of two or more thereof prior to proceeding with the etching process.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: January 5, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Peter L. G. Ventzek, Lee Chen, Akira Koshiishi, Ikuo Sawada
  • Publication number: 20090279226
    Abstract: A method for forming a capacitor includes providing a metal-containing bottom electrode, forming a capacitor insulator over the metal-containing bottom electrode, forming a metal-containing top electrode over the capacitor insulator, and forming a dielectric-containing field modification layer over the capacitor insulator and at least partially surrounding the metal-containing top electrode. Forming the dielectric-containing field modification layer may include oxidizing a sidewall of the metal-containing field modification layer. A barrier layer may be formed over the capacitor insulator prior to forming the metal-containing top electrode.
    Type: Application
    Filed: April 28, 2009
    Publication date: November 12, 2009
    Applicant: Freescale Semiconductor, Inc
    Inventors: Douglas R. Roberts, Eric D. Luckowski, Shahid Rauf, Peter L.G. Ventzek
  • Publication number: 20090241310
    Abstract: Film thickness uniformity and stoichiometry are controlled and deposition rate is increased in the chemical vapor deposition (CVD) of silicon nitride from complex gas mixtures in microwave plasmas. In Si2H6+NH3+Ar gas mixtures using a radial line slot antenna (RLSA) microwave plasma to deposit SiN by CVD, deposition rate and film uniformity are improved by limiting the amounts of atomic or molecular hydrogen from the gas mixture during the deposition process. A halogen, for example, fluorine, is added to a gas mixture of silane or disilane, ammonia and argon. The halogen scavenges hydrogen from the mixture, and prevents the hydrogen from blocking the nitrogen and silicon atoms and their fragments from bonding to the surface atoms and to grow stoichiometric silicon nitride. Adding the halogen generates free halogen radicals that react with hydrogen to create hydrogen halide, for example, HF or HCl, thereby scavenging the hydrogen.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jozef Brcka, Song Yun Kang, Toshio Nakanishi, Peter L.G. Ventzek, Minoru Honda, Masayuki Kohno
  • Patent number: 7592248
    Abstract: A semiconductor device having upright dielectric nanotubes at an inter-layer dielectric level and method of manufacturing such a device is disclosed. The use of a catalyst is proposed in the disclosed manufacturing flow that facilitates growth of upright dielectric nanotubes having ultra low-k values that form all or part of the dielectric material for an ILD. In one embodiment, carbon nanotubes form interlayer conducting vias. In another embodiment dielectric material nanotubes form reinforcing pillars. The integration of catalysts is proposed to accommodate both upright dielectric and upright conducting nanotube fabrication in the same layer.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: September 22, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Peter L. G. Ventzek, Marius K. Orlowski