Patents by Inventor Peter Ventzek

Peter Ventzek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140262042
    Abstract: A processing system is disclosed, having a power transmission element with an interior cavity that propagates electromagnetic energy proximate to a continuous slit in the interior cavity. The continuous slit forms an opening between the interior cavity and a substrate processing chamber. The electromagnetic energy may generate an alternating charge in the continuous slit that enables the generation of an electric field that may propagate into the processing chamber. The electric field may interact with process gas in the processing chamber to generate plasma for treating the substrate. The interior cavity may be isolated from the process chamber by a dielectric component that covers the continuous slit. The power transmission element may be used to control plasma density within the process chamber, either by itself or in combination with other plasma sources.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: Merritt Funk, Jianping Zhao, Lee Chen, Toshihiko Iwao, Toshihisa Nozawa, Zhiying Chen, Peter Ventzek
  • Publication number: 20140262041
    Abstract: A processing system is disclosed, having a power transmission element with an interior cavity that propagates electromagnetic energy proximate to a continuous slit in the interior cavity. The continuous slit forms an opening between the interior cavity and a substrate processing chamber. The electromagnetic energy may generate an alternating charge in the continuous slit that enables the generation of an electric field that may propagate into the processing chamber. The electric field may interact with process gas in the processing chamber to generate plasma for treating the substrate. The interior cavity may be isolated from the process chamber by a dielectric component that covers the continuous slit. The power transmission element may be used to control plasma density within the process chamber, either by itself or in combination with other plasma sources.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: Merritt Funk, Jianping Zhao, Lee Chen, Toshihiko Iwao, Toshihisa Nozawa, Zhiying Chen, Peter Ventzek
  • Publication number: 20140138356
    Abstract: A plasma processing apparatus includes a first electrode and a second electrode so arranged in the upper portion of a processing chamber as to face a mounting table, a gas supply unit for supplying a processing gas between the first electrode and the second electrode, a RF power supply unit for applying a RF power between the first electrode and the second electrode for converting the process gas supplied between the electrodes into a plasma, and a gas exhaust unit for evacuating the inside of the processing chamber to a vacuum level from the lower portion of the processing chamber. Since the electron temperature in the plasma is low near a substrate on the mounting table, damage to the substrate caused by the plasma can be suppressed. In addition, since a metal can be used as a material for the processing chamber, the processing chamber can have good temperature controllability.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Ikuo Sawada, Peter Ventzek, Tatsuro Ohshita, Kazuyoshi Matsuzaki, Songyun Kang
  • Publication number: 20140138030
    Abstract: Techniques disclosed herein include apparatus and processes for generating plasma having a uniform electron density across an electrode used to generate the plasma. An upper electrode of a capacitively coupled plasma system can include structural features configured to assist in generating the uniform plasma. Such structural features define a surface shape, on a surface that faces the plasma. Such structural features can include a set of concentric rings having an approximately rectangular cross section, and protruding from the surface of the upper electrode. Such structural features can also include nested elongated protrusions having a cross-sectional size and shape, with spacing of the protrusions selected to result in a system that generates uniform density plasma. A dielectric member or sheet can be positioned on the structural features to prevent or inhibit erosion from plasma while still maintaining plasma uniformity.
    Type: Application
    Filed: April 17, 2013
    Publication date: May 22, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Ikuo Sawada, Peter Ventzek
  • Patent number: 8636871
    Abstract: A plasma processing apparatus includes a first electrode and a second electrode so arranged in the upper portion of a processing chamber as to face a mounting table, a gas supply unit for supplying a processing gas between the first electrode and the second electrode, a RF power supply unit for applying a RF power between the first electrode and the second electrode for converting the process gas supplied between the electrodes into a plasma, and a gas exhaust unit for evacuating the inside of the processing chamber to a vacuum level from the lower portion of the processing chamber. Since the electron temperature in the plasma is low near a substrate on the mounting table, damage to the substrate caused by the plasma can be suppressed. In addition, since a metal can be used as a material for the processing chamber, the processing chamber can have good temperature controllability.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: January 28, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Ikuo Sawada, Peter Ventzek, Tatsuro Ohshita, Kazuyoshi Matsuzaki, Songyun Kang
  • Publication number: 20110017706
    Abstract: A wafer is disposed in a chamber, a plasma generating space is formed in the chamber, plasma processing is performed to the front surface of the processing object while keeping at least the front surface of the processing object in contact with the plasma generating space. The plasma processing is performed with the plasma generating space being kept in contact with at least the peripheral region of the back surface of the processing object.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 27, 2011
    Applicant: Tokyo Electron Limited
    Inventors: Tetsuro Takahashi, Yutaka Fujino, Hiroyuki Toshima, Atsushi Kubo, Song Yun Kang, Peter Ventzek, Sumie Segawa
  • Publication number: 20100307684
    Abstract: A microwave plasma processing apparatus (100) of a slot antenna type includes a plane antenna plate (31) constituting a flat waveguide and a cover (34) of a conductive member. The cover (34) is provided with a stub (43) as a second waveguide for adjusting electric field-distribution in the flat waveguide. The stub (43) is provided in the cover (34) of the conductive member. In plan view, the stub (43) is arranged to overlap slots (32) constituting a slot pair arranged at the outermost circumference of the plane antenna plate (31). By appropriately arranging the stub, it is possible to control electric field-distribution in the flat waveguide thereby to generate a uniform plasma.
    Type: Application
    Filed: September 26, 2008
    Publication date: December 9, 2010
    Applicant: Tokyo Electron Limited
    Inventors: Ryosaku Ota, Hikaru Adachi, Toshio Nakanishi, Atsushi Ueda, Songyun Kang, Paul Moroz, Peter Ventzek
  • Publication number: 20100006543
    Abstract: A plasma processing apparatus includes a first electrode and a second electrode so arranged in the upper portion of a processing chamber as to face a mounting table, a gas supply unit for supplying a processing gas between the first electrode and the second electrode, a RF power supply unit for applying a RF power between the first electrode and the second electrode for converting the process gas supplied between the electrodes into a plasma, and a gas exhaust unit for evacuating the inside of the processing chamber to a vacuum level from the lower portion of the processing chamber. Since the electron temperature in the plasma is low near a substrate on the mounting table, damage to the substrate caused by the plasma can be suppressed. In addition, since a metal can be used as a material for the processing chamber, the processing chamber can have good temperature controllability.
    Type: Application
    Filed: December 27, 2007
    Publication date: January 14, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Ikuo Sawada, Peter Ventzek, Tatsuro Ohshita, Kazuyoshi Matsuzaki, Songyun Kang
  • Publication number: 20070231946
    Abstract: A semiconductor device has lateral conductors or traces that are formed of nanotubes such as carbon. A sacrificial layer is formed overlying the substrate. A dielectric layer is formed overlying the sacrificial layer. A lateral opening is formed by removing a portion of the dielectric layer and the sacrificial layer which is located between two columns of metallic catalysts. The lateral opening includes a neck portion and a cavity portion which is used as a constrained space to grow a nanotube. A plasma is used to apply electric charge that forms an electric field which controls the direction of formation of the nanotubes. Nanotubes from each column of metallic catalyst are laterally grown and either abut or merge into one nanotube. Contact to the nanotube may be made from either the neck portion or the columns of metallic catalysts.
    Type: Application
    Filed: September 30, 2005
    Publication date: October 4, 2007
    Inventors: Marius Orlowski, Shahid Rauf, Peter Ventzek
  • Publication number: 20070166973
    Abstract: A metal layer etch process deposits, patterns and anisotropically etches a polysilicon layer (24) down to an underlying metal layer (22) to form an etched polysilicon structure (54) with polymer layers (50, 52) formed on its sidewall surfaces. The polymer layer (50, 52) are removed to expose an additional surface area (60, 62) of the metal layer (22), and dielectric layers (80, 82) are formed on the sidewall surfaces of the etched polysilicon structure (54). Next, the metal layer (22) is plasma etched to form an etched metal layer (95) with substantially vertical sidewall surfaces (97, 99) by simultaneously charging the dielectric layers (80, 82) to change plasma ion trajectories near the dielectric layers (80, 82) so that plasma ions (92, 94) impact the sidewall surfaces (97, 99) in a more perpendicular angle to enhance etching of the sidewall surfaces (97, 99) of the etched metal layer (95).
    Type: Application
    Filed: January 13, 2006
    Publication date: July 19, 2007
    Inventors: Shahid Rauf, Olubunmi Adetutu, Eric Luckowski, Peter Ventzek
  • Publication number: 20070163994
    Abstract: A method for etching a dielectric film is provided herein. In accordance with the method, a device (201) is provided which comprises a first chamber (203) equipped with a first gas supply (209) and a second chamber (205) equipped with a second gas supply (215), wherein the second chamber is in communication with the first chamber by way of an acceleration grid (211) having a variable potential. The gas flow into the plasma chamber is oscillated between a first state in which the gas flow into the first chamber has the composition ƒ11 and the gas flow into the second chamber has the composition ƒ21, and a second state in which the gas flow into the first chamber has the composition ƒ12 and the gas flow into the second chamber has the composition ƒ22.
    Type: Application
    Filed: January 18, 2006
    Publication date: July 19, 2007
    Inventors: Shahid Rauf, Peter Ventzek
  • Publication number: 20070155113
    Abstract: A method for forming a capacitor includes providing a metal-containing bottom electrode, forming a capacitor insulator over the metal-containing bottom electrode, forming a metal-containing top electrode over the capacitor insulator, and forming a dielectric-containing field modification layer over the capacitor insulator and at least partially surrounding the metal-containing top electrode. Forming the dielectric-containing field modification layer may include oxidizing a sidewall of the metal-containing field modification layer. A barrier layer may be formed over the capacitor insulator prior to forming the metal-containing top electrode.
    Type: Application
    Filed: January 4, 2006
    Publication date: July 5, 2007
    Inventors: Douglas Roberts, Eric Luckowski, Shahid Rauf, Peter Ventzek
  • Publication number: 20070049048
    Abstract: A semiconductor manufacturing apparatus and process for forming a nitrided dielectric film includes generating a plasma source (44) over a wafer structure (46), where the plasma source (44) includes neutral species (such as nitrogen atoms) and charged species (such as nitrogen ions) that are formed in an inductively coupled plasma reactor. Before the charged species in the plasma (44) can penetrate the wafer structure (46), an electrically connected mesh structure (45, 47) between the plasma source (44) and wafer structure (46) blocks the charged species. In addition or in the alternative, a magnetic field (69) aligned in parallel with the surface of the wafer structure (66) is established in close proximity to the wafer structure (66) in order to trap the charged species. By removing charged species, an improved, narrower nitrogen concentration profile is obtained.
    Type: Application
    Filed: August 31, 2005
    Publication date: March 1, 2007
    Inventors: Shahid Rauf, Peter Ventzek
  • Publication number: 20060063392
    Abstract: A method for forming a dielectric layer is disclosed herein. In accordance with the method, a first material is provided (303) which comprises a suspension of nanoparticles in a liquid medium. A dielectric layer is then formed (305) on the substrate from the suspension through an evaporative process.
    Type: Application
    Filed: September 20, 2004
    Publication date: March 23, 2006
    Inventors: Peter Ventzek, Kurt Junker, Marius Orlowski
  • Publication number: 20050196961
    Abstract: In one embodiment, a top surface of a semiconductor device (18) is amorphized in a tool (1). A metal is deposited over the semiconductor substrate using the same tool. In one embodiment, the same chambers are used. In an embodiment, the tool is a sputtering tool, such as a physical vapor deposition (PVD). The semiconductor substrate may be annealed to form a metal silicide (122) over at least a portion of the semiconductor device that includes silicon.
    Type: Application
    Filed: March 8, 2004
    Publication date: September 8, 2005
    Inventors: Da Zhang, Olubunmi Adetutu, Shahid Rauf, Peter Ventzek
  • Publication number: 20050164514
    Abstract: A chromeless phase lithography mask (30) that does not require photoresist to manufacture has a quartz substrate (32) is etched by using a plasma (38) containing one of a nitrogen augmented hydro-fluorocarbon oxygen mixture and a nitrogen augmented fluorocarbon oxygen mixture. Various hydro-fluorocarbons or fluorocarbons may be used. The nitrogen addition results in etched openings in the quartz substrate that have substantially vertical sidewalls in a uniform manner across the substrate. Surface roughness is minimized and edges of the openings are well-defined with minimal rounding. The etch rate is rendered controllable by reducing bias power without degrading a desired vertical sidewall profile.
    Type: Application
    Filed: January 28, 2004
    Publication date: July 28, 2005
    Inventors: Shahid Rauf, Peter Ventzek, Wei Wu