Patents by Inventor Philipp Steinmann

Philipp Steinmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7403094
    Abstract: An integrated circuit thin film resistor structure includes a first dielectric layer (18A) disposed on a semiconductor layer (16), a first dummy fill layer (9A) disposed on the first dielectric layer (18B), a second dielectric layer (18C) disposed on the first dummy fill layer (9A), the second dielectric layer (18B) having a first planar surface (18-3), a first thin film resistor (2) disposed on the first planar surface (18-3) over the first dummy fill layer (9A). A first metal interconnect layer (22A,B) includes a first portion (22A) contacting a first head portion of the thin film resistor (2). A third dielectric layer (21) is disposed on the thin film resistor (2) and the first metal interconnect layer (22A,B). Preferably, the first thin film resistor (2) is symmetrically aligned with the first dummy fill layer (9A). In the described embodiments, the first dummy fill layer is composed of metal (integrated circuit metallization).
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Walter B. Meinel, Philipp Steinmann
  • Publication number: 20080042199
    Abstract: The disclosure herein pertains to fashioning an n channel junction field effect transistor (NJFET) and/or a p channel junction field effect transistor (PJFET) with an open drain, where the open drain allows the transistors to operate at higher voltages before experiencing gate leakage current. The open drain allows the voltage to be increased several fold without increasing the size of the transistors. Opening the drain essentially spreads equipotential lines of respective electric fields developed at the drains of the devices so that the local electric fields, and hence the impact ionization rates are reduced to redirect current below the surface of the transistors.
    Type: Application
    Filed: August 15, 2006
    Publication date: February 21, 2008
    Inventors: Joe R. Trogolo, Hiroshi Yasuda, Badih El-Kareh, Philipp Steinmann
  • Publication number: 20080026515
    Abstract: An junction field effect transistor (JFET) is fashioned with a patterned layer of silicide block (SBLK) material utilized in forming gate, source and drain regions. Utilizing the silicide block in this manner helps to reduce low-frequency (flicker) noise associated with the JFET by suppressing the impact of surface states, among other things.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 31, 2008
    Inventors: Badih El-Kareh, Hiroshi Yasuda, Scott Gerard Balster, Philipp Steinmann, Joe R. Trogolo
  • Patent number: 7217322
    Abstract: A method of fabricating an epitaxial silicon-germanium layer for an integrated semiconductor device comprises the step of depositing an arsenic in-situ doped silicon-germanium layer, wherein arsenic and germanium are introduced subsequently into different regions of said silicon-germanium layer during deposition of said silicon-germanium layer. By separating arsenic from germanium any interaction between arsenic and germanium is avoided during deposition thereby allowing fabricating silicon-germanium layers with reproducible doping profiles.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 15, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Scott Balster, Alfred Haeusler, Angelo Pinto, Manfred Schiekofer, Philipp Steinmann, Badih El-Kareh
  • Patent number: 7208388
    Abstract: A method of making integrated circuit thin film resistor includes forming a first dielectric layer (18B) over a substrate and providing a structure to reduce variation of head resistivity thereof by forming a dummy fill layer (9A) on the first dielectric layer, and forming a second dielectric layer (18D) over the first dummy fill layer. A thin film resistor (2) is formed on the second dielectric layer (18D). A first inter-level dielectric layer (21A) is formed on the thin film resistor and the second dielectric layer. A first metal layer (22A) is formed on the first inter-level dielectric layer and electrically contacts a portion of the thin film resistor. Preferably, the first dummy fill layer is formed as a repetitive pattern of sections such that the repetitive pattern is symmetrically aligned with respect to multiple edges of the thin-film resistor (2).
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 24, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Philipp Steinmann
  • Publication number: 20070069269
    Abstract: The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.
    Type: Application
    Filed: October 13, 2006
    Publication date: March 29, 2007
    Inventors: Scott Balster, Badih El-Kareh, Philipp Steinmann, Christoph Dirnecker
  • Patent number: 7192838
    Abstract: Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: March 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl
  • Patent number: 7144789
    Abstract: In a method of fabricating complementary bipolar transistors with SiGe base regions the base regions of the NPN and PNP transistors are formed one after the other over two collector regions 20, 14 by epitaxial deposition of crystalline silicon-germanium layers 32a, 36a. With this method the germanium profile of the SiGe layers can be freely selected for both NPN and PNP transistors in thus enabling complementary transistor performance to be optimized individually. The SiGe layers 32a, 36a can be doped with an n-type or p-type dopant during or after deposition of the silicon-germanium layers 32a, 36a.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: December 5, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Badih El-Kareh, Scott Balster, Philipp Steinmann, Thomas Scharnagl, Manfred Schiekofer, Carl Willis
  • Patent number: 7130182
    Abstract: The invention relates to a stacked capacitor (10) comprising a silicon base plate (16), a poly-silicon center plate (32) arranged above the base plate (16), a lower gate-oxide dielectric (26) arranged between the base plate (16) and the center plate (32), a cover plate (36) made of a metallic conductor and arranged above the center plate (32), and an upper dielectric (34) arranged between the center plate (32) and the cover plate (36). The cover plate (36) and the base plate (16) are electrically connected to each other and together form a first capacitor electrode. The center plate (32) forms a second capacitor electrode. The invention further relates to an integrated circuit with such a stacked capacitor, as well as to a method for fabrication of a stacked capacitor as part of a CMOS process.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: October 31, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Scott Balster, Badih El-Kareh, Philipp Steinmann, Christoph Dirnecker
  • Publication number: 20060238292
    Abstract: An integrated circuit thin film resistor structure includes a first dielectric layer (18A) disposed on a semiconductor layer (16), a first dummy fill layer (9A) disposed on the first dielectric layer (18B), a second dielectric layer (18C) disposed on the first dummy fill layer (9A), the second dielectric layer (18B) having a first planar surface (18-3), a first thin film resistor (2) disposed on the first planar surface (18-3) over the first dummy fill layer (9A). A first metal interconnect layer (22A,B) includes a first portion (22A) contacting a first head portion of the thin film resistor (2). A third dielectric layer (21) is disposed on the thin film resistor (2) and the first metal interconnect layer (22A,B). Preferably, the first thin film resistor (2) is symmetrically aligned with the first dummy fill layer (9A). In the described embodiments, the first dummy fill layer is composed of metal (integrated circuit metallization).
    Type: Application
    Filed: April 11, 2005
    Publication date: October 26, 2006
    Inventors: Eric Beach, Walter Meinel, Philipp Steinmann
  • Publication number: 20060228879
    Abstract: A method of making integrated circuit thin film resistor includes forming a first dielectric layer (18B) over a substrate and providing a structure to reduce variation of head resistivity thereof by forming a dummy fill layer (9A) on the first dielectric layer, and forming a second dielectric layer (18D) over the first dummy fill layer. A thin film resistor (2) is formed on the second dielectric layer (18D). A first inter-level dielectric layer (21A) is formed on the thin film resistor and the second dielectric layer. A first metal layer (22A) is formed on the first inter-level dielectric layer and electrically contacts a portion of the thin film resistor. Preferably, the first dummy fill layer is formed as a repetitive pattern of sections such that the repetitive pattern is symmetrically aligned with respect to multiple edges of the thin-film resistor (2).
    Type: Application
    Filed: April 8, 2005
    Publication date: October 12, 2006
    Inventors: Eric Beach, Philipp Steinmann
  • Patent number: 7118981
    Abstract: In a method of fabricating an integrated silicon-germanium heterobipolar transistor a silicon dioxide layer arranged between a silicon-germanium base layer and a silicon emitter layer is formed by means of Rapid Thermal Processing (RTP) to ensure enhanced component properties of the integrated silicon-germanium heterobipolar transistor.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Alfred Haeusler, Philipp Steinmann, Scott Balster, Badih El-Kareh
  • Patent number: 7112286
    Abstract: A thin film resistor structure and a method of fabricating a thin film resistor structure is provided. The thin film resistor structure includes an electrical interface layer or head layer that is a combination of a Titanium (Ti) layer and a Titanium Nitride (TiN) layer. The combination of the Ti layer and the TiN layer mitigates resistance associated with the electrical interface layers.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: September 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Brian Vialpando, Eric William Beach, Philipp Steinmann
  • Patent number: 7039888
    Abstract: A method is presented, in which a thin film resistor is modeled to account for self-heating. The method includes fabricating the thin film resistor and characterizing a thermal resistance of the thin film resistor, wherein the thermal resistance accounts for self-heating thereof during operation. The thermal resistance is then used in a model for simulating integrated circuits using the thin film resistor.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: May 2, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Amitava Chatterjee, Doug Weiser, Roland Bucksch
  • Publication number: 20060073672
    Abstract: An integrated BiCMOS semiconductor circuit has active moat areas in silicon. The active moat areas include electrically active components of the semiconductor circuit, which comprise active window structures for base and/or emitter windows. The integrated BiCMOS semiconductor circuit has zones where silicon is left to form dummy moat areas which do not include electrically active components, and has isolation trenches to separate the active moat areas from each other and from the dummy moat areas. The dummy moat areas comprise dummy window structures having geometrical dimensions and shapes similar to those of the active window structures for the base and/or emitter windows.
    Type: Application
    Filed: September 23, 2005
    Publication date: April 6, 2006
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl, Michael Schmitt
  • Patent number: 7005361
    Abstract: In one embodiment, an integrated circuit includes a thin film resistor, which includes a resistor material that has been deposited on a substrate surface within a channel defined by opposing first and second portions of a stencil structure formed on the substrate surface, the resistor material having an initial width determined by a width of the channel. The stencil structure has been adapted to receive a planarizing material that protects against reduction of the initial width of the resistor material during subsequent process steps for removing the stencil structure. A head mask overlays an end portion of the thin film resistor and a dielectric overlays the head mask, the dielectric defining a via formed in the dielectric above a portion of the head mask. A conductive material has been deposited in the via, coupled to the portion of the head mask and electrically connecting the thin film resistor to other components of the integrated circuit.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: February 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Siang Ping Kwok, Eric W. Beach, Philipp Steinmann
  • Publication number: 20060027526
    Abstract: A thin film resistor structure and a method of fabricating a thin film resistor structure is provided. The thin film resistor structure includes an electrical interface layer or head layer that is a combination of a Titanium (Ti) layer and a Titanium Nitride (TiN) layer. The combination of the Ti layer and the TiN layer mitigates resistance associated with the electrical interface layers.
    Type: Application
    Filed: October 4, 2005
    Publication date: February 9, 2006
    Inventors: Brian Vialpando, Eric Beach, Philipp Steinmann
  • Publication number: 20050258990
    Abstract: An integrated circuit programmable structure (60) is formed for use a trim resistor and/or a programmable fuse. The programmable structure comprises placing heating elements (70) in close proximity to the programmable structure (60) to heat the programmable structure (60) during programming.
    Type: Application
    Filed: July 15, 2005
    Publication date: November 24, 2005
    Inventors: Jeffrey Babcock, Angelo Pinto, Gregory Howard, Philipp Steinmann, Scott Balster
  • Patent number: 6958523
    Abstract: An integrated circuit programmable structure (60) is formed for use a trim resistor and/or a programmable fuse. The programmable structure comprises placing heating elements (70) in close proximity to the programmable structure (60) to heat the programmable structure (60) during programming.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: October 25, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Gregory E. Howard, Philipp Steinmann, Scott Balster
  • Publication number: 20050124079
    Abstract: A method is presented, in which a thin film resistor is modeled to account for self-heating. The method includes fabricating the thin film resistor and characterizing a thermal resistance of the thin film resistor, wherein the thermal resistance accounts for self-heating thereof during operation. The thermal resistance is then used in a model for simulating integrated circuits using the thin film resistor.
    Type: Application
    Filed: December 4, 2003
    Publication date: June 9, 2005
    Inventors: Philipp Steinmann, Amitava Chatterjee, Doug Weiser, Roland Bucksch