Patents by Inventor Ranganathan Gurunathan

Ranganathan Gurunathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146050
    Abstract: An auxiliary circuit to inject fault current to a grid is provided. The circuit includes a pair of transformers including a first transformer and a second transformer, and a pair of SCRs including a first SCR and a second SCR. Each SCR remains in an OFF state and an ON state when AC voltage of the grid is in normal range and fault range, respectively. The circuit includes a capacitor electrically connected between the first transformer, the second transformer, and the first SCR. The circuit includes a diode biased by the second transformer and the capacitor to enable charging of the capacitor to a peak of AC voltage during one polarity of AC voltage when the AC voltage is in normal range. The capacitor discharges via the first SCR and the first transformer by injecting the fault current into the grid when the AC voltage is in the fault range.
    Type: Application
    Filed: October 24, 2023
    Publication date: May 2, 2024
    Inventors: Chaitanya MANDELA, Prasad PMSVVSV, Ranganathan GURUNATHAN, Vishal A. GOPALAKRISHNAN, Ponkiran PONNAPPAN
  • Patent number: 11916378
    Abstract: A power generation system includes a power source that is configured to communicate with at least one of a downstream load or a downstream device by changing a voltage on a power bus between the power source and the at least one of the downstream load or the downstream device, while power source provides power on the power bus to the at least one of the downstream load or the downstream device.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: February 27, 2024
    Assignees: BLOOM ENERGY CORPORATION, POWERSECURE INCORPORATED
    Inventors: Arne Ballantine, Prasad Pmsvvsv, Rajesh Gopinath, Ranganathan Gurunathan, Robert Harris, Marshall Worth, Chaitanya Mandela, Vishal Anand Gopalakrishnan
  • Publication number: 20240039291
    Abstract: A system for fuel cell based microgrid is provided. The system includes a plurality of fuel cell modules to generate DC power. The system includes a plurality of dual-mode inverters (DMIs) to convert the DC power into AC power. The system includes a plurality of DC switches to electrically connect or disconnect a fuel cell module from a DC bus. The DC bus is electrically coupled to the plurality of the DC switches. The plurality of DMIs includes a first set of DMIs, second set of DMIs, and a third set of DMIs. The first set is configured to electrically connect a first set of fuel cell modules with a grid. The second set of DMIs is configured to electrically connect a second set of fuel cell modules with a first load. The third set of DMIs is configured to electrically connect the DC bus with the first load.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 1, 2024
    Inventors: Carl COTTULI, Prasad PMSVVSV, Ranganathan GURUNATHAN, Beau BAKER, Edwin PHO
  • Publication number: 20230420936
    Abstract: Embodiments of the present disclosure provide control systems and methods to reduce wastage of energy associated with fuel cell systems. The method includes transmitting DC power from a plurality of fuel cells of a set of power modules to a centralized DC bus through a first set of DC-DC converters. The method includes operating a second set of DC-DC converters to provide an output DC power by boosting a voltage level of the DC power from the centralized DC bus and further operating a first set of DC-AC inverters to convert the DC power from the second set of DC-DC converters to AC power. The method includes transmitting the AC power from the first set of DC-AC inverters to a grid. The AC power is transmitted to the grid at substantially unity power factor due to combined effect of switching modulation and MPPT of the first set of DC-AC inverters.
    Type: Application
    Filed: June 25, 2023
    Publication date: December 28, 2023
    Inventors: Vishal Anand Aisur GOPALAKRISHNAN, Ranganathan GURUNATHAN, Badrinarayanan THIRUVENGADASAMY, Subhash DESWAL, Rudrayya S. MATH, Anbarasu DORAI, Pavankumar DIXIT
  • Patent number: 11791730
    Abstract: Various embodiments may provide non-isolated single-input dual-output (SIDO) bi-directional buck-boost direct current (DC) to DC (DC-DC) converters. Various embodiments may provide a method for controlling a buck duty cycle of the non-isolated SIDO bi-directional buck-boost DC-DC converter such that a first voltage measured across a first portion of the non-isolated SIDO bi-directional buck-boost DC-DC converter is maintained at less than a voltage of a first load and a second voltage measured across a second portion of the non-isolated SIDO bi-directional buck-boost DC-DC converter is maintained at less than a voltage of a second load.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: October 17, 2023
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Ranganathan Gurunathan, Rakesh Roy, Bala Subrahmanyam Kuchibhatla, Srinivas Rao Potta, Deepak Balakrishnan
  • Publication number: 20230261519
    Abstract: A power generation system includes a power source that is configured to communicate with at least one of a downstream load or a downstream device by changing a voltage on a power bus between the power source and the at least one of the downstream load or the downstream device, while power source provides power on the power bus to the at least one of the downstream load or the downstream device.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 17, 2023
    Inventors: Arne BALLANTINE, Prasad PMSVVSV, Rajesh GOPINATH, Ranganathan GURUNATHAN, Robert HARRIS, Marshall WORTH, Chaitanya MANDELA, Vishal Anand GOPALAKRISHNAN
  • Patent number: 11664521
    Abstract: A fuel cell system column includes a first terminal plate connected to a first electrical output of the column, a second terminal plate connected to a second electrical output of the column, at least one first fuel cell stack located in a middle portion of the column between the first terminal plate and the second terminal plate, and at least one electrical connection which is electrically connected to the middle portion of the column and which is configured to provide a more uniform fuel utilization across the first column.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: May 30, 2023
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Tad Armstrong, Harald Herchen, David Weingaertner, Rajan Surve, Matthias Gottmann, Prasad Pmsvvsv, Ranganathan Gurunathan, Arne Ballantine, Michael Gasda, Tyler Dawson, Chockkalingam Karuppaiah
  • Publication number: 20230045065
    Abstract: Various embodiments may provide non-isolated single-input dual-output (SIDO) bi-directional buck-boost direct current (DC) to DC (DC-DC) converters. Various embodiments may provide a method for controlling a buck duty cycle of the non-isolated SIDO bi-directional buck-boost DC-DC converter such that a first voltage measured across a first portion of the non-isolated SIDO bi-directional buck-boost DC-DC converter is maintained at less than a voltage of a first load and a second voltage measured across a second portion of the non-isolated SIDO bi-directional buck-boost DC-DC converter is maintained at less than a voltage of a second load.
    Type: Application
    Filed: May 5, 2022
    Publication date: February 9, 2023
    Inventors: Ranganathan GURUNATHAN, Rakesh ROY, Bala Subrahmanyam KUCHIBHATLA, Srinivas Rao POTTA, Deepak BALAKRISHNAN
  • Publication number: 20220285977
    Abstract: A microgrid includes a power system configured to output system power and an automatic transfer switch (ATS). The ATS includes a normal terminal that is electrically connected to a grid power line configured to receive grid power from a power utility, an emergency terminal that is electrically connected to a system power line configured to receive system power from the power system, and a load terminal that is electrically connected to a critical load line configured to provide power to a critical load. The microgrid also includes a bypass line electrically connected to the system power line and the critical load line, so as to bypass the ATS, and a circuit breaker configured to control power flow through the bypass line.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 8, 2022
    Inventors: Prasad PMSVVSV, Mehdi EBAD, Ranganathan GURUNATHAN, Vishal Anand GOPALAKRISHNAN, Jayanth MOODLIAR, Saravana NARAYANASAMY, Rakesh Kumar ROY, Deepak BALAKRISHNAN
  • Publication number: 20220246962
    Abstract: Systems, methods, and devices of the various embodiments provide a hardware and software architecture enabling electrochemical impedance spectroscopy (“EIS”) to be performed on multiple electrochemical devices, such as fuel cells, at the same time without human interaction with the electrochemical devices and to use EIS to dynamically monitor the performance of a fuel cell system. Embodiment methods may include determining an impedance of a set of fuel cells using electrochemical impedance spectroscopy, determining an ohmic polarization of the set of fuel cells from the impedance, determining a concentration polarization of the set of fuel cells from the impedance, comparing the ohmic polarization of the set of fuel cells to a first threshold, comparing the concentration polarization of the set of fuel cells to a second threshold, and initiating a corrective action when the ohmic polarization is above the first threshold or when the concentration polarization is below the second threshold.
    Type: Application
    Filed: April 15, 2022
    Publication date: August 4, 2022
    Inventors: Karthick SUDHAN S, Bhavana GANESH, Abhishek DUDHMANDE, Ranganathan GURUNATHAN, Ian RUSSELL
  • Patent number: 11335928
    Abstract: Systems, methods, and devices of the various embodiments provide a hardware and software architecture enabling electrochemical impedance spectroscopy (“EIS”) to be performed on multiple electrochemical devices, such as fuel cells, at the same time without human interaction with the electrochemical devices and to use EIS to dynamically monitor the performance of a fuel cell system. Embodiment methods may include determining an impedance of a set of fuel cells using electrochemical impedance spectroscopy, determining an ohmic polarization of the set of fuel cells from the impedance, determining a concentration polarization of the set of fuel cells from the impedance, comparing the ohmic polarization of the set of fuel cells to a first threshold, comparing the concentration polarization of the set of fuel cells to a second threshold, and initiating a corrective action when the ohmic polarization is above the first threshold or when the concentration polarization is below the second threshold.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: May 17, 2022
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Karthick Sudhan S, Bhavana Ganesh, Abhishek Dudhmande, Ranganathan Gurunathan, Ian Russell
  • Patent number: 11258294
    Abstract: Various embodiments include methods and systems for implementing managing a microgrid system. The system may include a plurality of power module clusters, a plurality of uninterruptable power modules, a plurality of bidirectional direct current (DC)/DC converters, and a DC power bus. Each one of the power module clusters of the plurality of power module clusters may be electrically connected in parallel to an uninterruptable power module of the plurality of uninterruptable power modules and a first end of a bidirectional DC/DC converter of the plurality bidirectional DC/DC converters, and a second end of each one of the bidirectional DC/DC converters of the plurality of bidirectional DC/DC converters may be electrically connected to the DC power bus. In some embodiments, the plurality of bidirectional DC/DC converters may be electrically connected to in parallel by the DC power bus or in series via a DC power bus ring.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: February 22, 2022
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Prasad Pmsvvsv, Ranganathan Gurunathan
  • Patent number: 11128147
    Abstract: A system and method of provided power to one or more electrical loads of an electrical load module is provided. The electrical load module includes an alternating current (AC) power input port, a direct current (DC) power input port, a power distribution device, a first power supply device, a second power supply device, and a first electrical load component. The power distribution device is electrically coupled to the AC power input port via a first connector and the DC power input port via a second connection. The first electrical load component is coupled to the first power supply device and the second power supply device. The first power supply device and the second power supply device are configured to provide power to the first electrical load component and a feed from an alternative power source system is directly connected to the DC power input port of the electrical load module.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 21, 2021
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Arne Ballantine, Ranganathan Gurunathan, Rajesh Gopinath, Carl Cottuli
  • Publication number: 20210257645
    Abstract: A fuel cell system column includes a first terminal plate connected to a first electrical output of the column, a second terminal plate connected to a second electrical output of the column, at least one first fuel cell stack located in a middle portion of the column between the first terminal plate and the second terminal plate, and at least one electrical connection which is electrically connected to the middle portion of the column and which is configured to provide a more uniform fuel utilization across the first column.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: Tad ARMSTRONG, Harald HERCHEN, David WEINGAERTNER, Rajan SURVE, Matthias GOTTMANN, Prasad PMSVVSV, Ranganathan GURUNATHAN, Arne BALLANTINE, Michael GASDA, Tyler DAWSON, Chockkalingam KARUPPAIAH
  • Publication number: 20210152016
    Abstract: Various embodiments include methods and systems for implementing managing a microgrid system. The system may include a plurality of power module clusters, a plurality of uninterruptable power modules, a plurality of bidirectional direct current (DC)/DC converters, and a DC power bus. Each one of the power module clusters of the plurality of power module clusters may be electrically connected in parallel to an uninterruptable power module of the plurality of uninterruptable power modules and a first end of a bidirectional DC/DC converter of the plurality bidirectional DC/DC converters, and a second end of each one of the bidirectional DC/DC converters of the plurality of bidirectional DC/DC converters may be electrically connected to the DC power bus. In some embodiments, the plurality of bidirectional DC/DC converters may be electrically connected to in parallel by the DC power bus or in series via a DC power bus ring.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 20, 2021
    Inventors: Prasad PMSVVSV, Ranganathan GURUNATHAN
  • Patent number: 10989760
    Abstract: A method includes selecting a test waveform to inject from a first DC converter to at least one first DC power source other than a fuel cell, determining a first resulting ripple that will be generated in response to injecting the test waveform onto the battery, determining at least one offset waveform to inject from at least one second DC converter to at least one second DC power source to generate one or more second ripples which cancel the first resulting ripple, injecting the test waveform from the first DC converter to the at least one first DC power source, injecting the at least one offset waveform from the at least one second DC converter to the at least one second DC power source, and determining a characteristic of the first DC power source based at least in part on the impedance response of the first DC power source.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 27, 2021
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Arne Ballantine, Ranganathan Gurunathan, Anilkumar Vishnuvarjula, Chockkalingam Karuppaiah
  • Patent number: 10873099
    Abstract: Systems and methods are provided for creating and operating a Direct Current (DC) micro-grid. A DC micro-grid may include power generators, energy storage devices, and loads coupled to a common DC bus. Power electronics devices may couple the power generators, energy storage devices, and loads to the common DC bus and provide power transfer.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: December 22, 2020
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Ranganathan Gurunathan, Arne Ballantine, Prasad Pmsvvsv, Rakesh Kumar Roy, Badrinarayanan Thiruvengadaswamy, Rajesh Gopinath, Saravanakumar Narayanasamy, Vishal Anand Gopalakrishnan, Anilkumar Vishnuvarjula, Tad Armstrong, Ian Russell
  • Patent number: 10809308
    Abstract: A method includes selecting a test waveform to inject to a battery from a first DC converter, determining a first resulting ripple that will be generated in response to injecting the test waveform, determining at least one offset waveform to inject to at least one second DC power source from at least one second DC converter such that one or more second ripples will be provided that will cancel the first resulting ripple if the battery is charging, injecting the test waveform to the battery, injecting the at least one offset waveform to the at least one second DC power source, determining if the first resulting ripple has been cancelled, and determining if the battery is charging or discharging based on the step of determining if the first resulting ripple has been cancelled.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 20, 2020
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Arne Ballantine, Ranganathan Gurunathan, Anilkumar Vishnuvarjula, Chockkalingam Karuppaiah
  • Patent number: 10756546
    Abstract: A method of controlling an inverter having a three phase output and a plurality of single phase loads connected to respective one of the three phases of the three phase output includes determining if a first phase of the three phase output has a heavier load than a second phase of the three phase output, and providing a higher output power from the inverter to the first phase than to the second phase if it is determined that the first phase has a heavier load than the second phase.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 25, 2020
    Assignee: BLOOM ENERGY CORPORATION
    Inventors: Prasad Pmsvvsv, Ranganathan Gurunathan, Swaminathan Venkataraman, Arne Ballantine, Deepak Balakrishnan
  • Publication number: 20200209318
    Abstract: A method includes selecting a test waveform to inject to a battery from a first DC converter, determining a first resulting ripple that will be generated in response to injecting the test waveform, determining at least one offset waveform to inject to at least one second DC power source from at least one second DC converter such that one or more second ripples will be provided that will cancel the first resulting ripple if the battery is charging, injecting the test waveform to the battery, injecting the at least one offset waveform to the at least one second DC power source, determining if the first resulting ripple has been cancelled, and determining if the battery is charging or discharging based on the step of determining if the first resulting ripple has been cancelled.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Arne BALLANTINE, Ranganathan GURUNATHAN, Anilkumar VISHNUVARJULA, Chockkalingam KARUPPAIAH