Patents by Inventor Reza Sadjadi

Reza Sadjadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10811233
    Abstract: Process chambers having a tunable showerhead and a tunable liner are disclosed herein. In some embodiments, a processing chamber includes a showerhead; a chamber liner; a first impedance circuit coupled to the showerhead to tune an impedance of the showerhead; a second impedance circuit coupled to the chamber liner to tune an impedance of the chamber liner; and a controller coupled to the first and second impedance circuits to control relative impedances of the showerhead and the chamber liner.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: October 20, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Andrew Nguyen, Xue Yang Chang, Haitao Wang, Kei-Yu Ko, Reza Sadjadi
  • Patent number: 10410889
    Abstract: In some embodiments, a plasma processing apparatus includes a processing chamber to process a substrate; a mounting surface defined within the processing chamber to support a substrate disposed within the processing chamber; a showerhead disposed within the processing chamber and aligned so as to face the mounting surface, the showerhead defining a plurality of orifices to introduce a process gas into the processing chamber toward a substrate disposed within the processing chamber; and one or more magnets supported by the showerhead and arranged so that a radial component of a magnetic field applied by each of the one or more magnets has a higher flux density proximate a first region corresponding to an edge surface region of a substrate when disposed within the processing chamber than at a second region corresponding to an interior surface region of a substrate when disposed within the processing chamber.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: S. M. Reza Sadjadi, Haitao Wang, Jie Zhou, Tza-Jing Gung, Chunlei Zhang, Fernando M. Silveira
  • Patent number: 10177050
    Abstract: A dynamically tunable process kit, a processing chamber having a dynamically tunable process kit, and a method for processing a substrate using a dynamically tunable process kit are provided. The dynamically tunable process kit allows one or both of the electrical and thermal state of the process kit to be changed without changing the physical construction of the process kit, thereby allowing plasma properties, and hence processing results, to be easily changed without replacing the process kit. The processing chamber having a dynamically tunable process kit includes a chamber body that includes a portion of a conductive side wall configured to be electrically controlled, and a process kit. The processing chamber includes a first control system operable to control one or both of an electrical and thermal state of the process kit and a second control system operable to control an electrical state of the portion of the side wall.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: January 8, 2019
    Assignee: Applied Materials, Inc.
    Inventors: S. M. Reza Sadjadi, Dmitry Lubomirsky, Hamid Noorbakhsh, John Zheng Ye, David H. Quach, Sean S. Kang
  • Publication number: 20180047544
    Abstract: Process chambers having a tunable showerhead and a tunable liner are disclosed herein. In some embodiments, a processing chamber includes a showerhead; a chamber liner; a first impedance circuit coupled to the showerhead to tune an impedance of the showerhead; a second impedance circuit coupled to the chamber liner to tune an impedance of the chamber liner; and a controller coupled to the first and second impedance circuits to control relative impedances of the showerhead and the chamber liner.
    Type: Application
    Filed: August 9, 2017
    Publication date: February 15, 2018
    Inventors: ANDREW NGUYEN, XUE YANG CHANG, HAITAO WANG, KEI-YU KO, REZA SADJADI
  • Patent number: 9805965
    Abstract: Implementations described herein provide a chucking circuit for a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, a chucking circuit for an electrostatic chuck (ESC) has one or more chucking electrodes disposed in a dielectric body of the ESC, a plurality of pixel electrodes disposed in the dielectric body, and a chucking circuit having the one or more chucking electrodes and the plurality of pixel electrodes, the chucking circuit operable to electrostatically chuck a substrate to a workpiece support surface of the ESC, the chucking circuit having a plurality of secondary circuits, wherein each secondary circuit includes at least one capacitor of a plurality of capacitors, each secondary circuit is configured to independently control an impedance between one of the pixel electrodes and a ground.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 31, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Reza Sadjadi, Wendell Glen Boyd, Jr., Vijay D. Parkhe, Maxim Mikhailovich Noginov
  • Patent number: 9646843
    Abstract: Implementations described herein provide a magnetic ring which enables both lateral and azimuthal tuning of the plasma in a processing chamber. In one embodiment, the magnetic ring has a body. The body has a top surface and a bottom surface, and a plurality of magnets are disposed on the bottom surface of the body.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 9, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Andrew Nguyen, Tza-Jing Gung, Haitao Wang, Maxim Mikhailovich Noginov, Reza Sadjadi, Chunlei Zhang, Xue Yang
  • Publication number: 20170110358
    Abstract: Implementations described herein provide a chucking circuit for a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, a chucking circuit for an electrostatic chuck (ESC) has one or more chucking electrodes disposed in a dielectric body of the ESC, a plurality of pixel electrodes disposed in the dielectric body, and a chucking circuit having the one or more chucking electrodes and the plurality of pixel electrodes, the chucking circuit operable to electrostatically chuck a substrate to a workpiece support surface of the ESC, the chucking circuit having a plurality of secondary circuits, wherein each secondary circuit includes at least one capacitor of a plurality of capacitors, each secondary circuit is configured to independently control an impedance between one of the pixel electrodes and a ground.
    Type: Application
    Filed: December 30, 2016
    Publication date: April 20, 2017
    Inventors: S. M. Reza SADJADI, Wendell Glen BOYD, JR., Vijay D. PARKHE, Maxim Mikhailovich NOGINOV
  • Publication number: 20170004988
    Abstract: Implementations described herein provide a chucking circuit for a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, a chucking circuit for an electrostatic chuck (ESC) has one or more chucking electrodes disposed in a dielectric body of the ESC, a plurality of pixel electrodes disposed in the dielectric body, and a chucking circuit having the one or more chucking electrodes and the plurality of pixel electrodes, the chucking circuit operable to electrostatically chuck a substrate to a workpiece support surface of the ESC, the chucking circuit having a plurality of secondary circuits, wherein each secondary circuit includes at least one capacitor of a plurality of capacitors, each secondary circuit is configured to independently control an impedance between one of the pixel electrodes and a ground.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Reza SADJADI, Wendell Glen BOYD, JR., Vijay D. PARKHE, Maxim Mikhailovich NOGINOV
  • Patent number: 9536769
    Abstract: Implementations described herein provide a chucking circuit for a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, a chucking circuit for an electrostatic chuck (ESC) has one or more chucking electrodes disposed in a dielectric body of the ESC, a plurality of pixel electrodes disposed in the dielectric body, and a chucking circuit having the one or more chucking electrodes and the plurality of pixel electrodes, the chucking circuit operable to electrostatically chuck a substrate to a workpiece support surface of the ESC, the chucking circuit having a plurality of secondary circuits, wherein each secondary circuit includes at least one capacitor of a plurality of capacitors, each secondary circuit is configured to independently control an impedance between one of the pixel electrodes and a ground.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: January 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Reza Sadjadi, Wendell Glen Boyd, Jr., Vijay D. Parkhe, Maxim Mikhailovich Noginov
  • Publication number: 20160329256
    Abstract: A dynamically tunable process kit, a processing chamber having a dynamically tunable process kit, and a method for processing a substrate using a dynamically tunable process kit are provided. The dynamically tunable process kit allows one or both of the electrical and thermal state of the process kit to be changed without changing the phyisical construction of the process kit, thereby allowing plasma properties, and hence processing results, to be easily changed without replacing the process kit. The processing chamber having a dynamically tunable process kit includes a chamber body that includes a portion of a conductive side wall configured to be electrically controlled, and a process kit. The processing chamber includes a first control system operable to control one or both of an electrical and thermal state of the process kit and a second control system operable to control an electrical state of the portion of the side wall.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: S. M. Reza SADJADI, Dmitry LUBOMIRSKY, Hamid NOORBAKHSH, John Zheng YE, David H. QUACH, Sean S. KANG
  • Patent number: 9472410
    Abstract: Implementations described herein provide a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, the pixilated electrostatic chuck (ESC) may include a dielectric body having a workpiece support surface configured to accept a substrate thereon, one or more chucking electrodes disposed in the pixilated ESC, and a plurality of pixel electrodes. The plurality of pixel electrodes are switchable between a floating state and a grounded state, having variable capacitance to ground, or both. The pixel electrodes and the chucking electrodes form a circuit operable to electrostatically chuck the substrate to the workpiece support surface.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: October 18, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Reza Sadjadi, Wendell Glen Boyd, Jr., Vijay D. Parkhe, Maxim Mikhailovich Noginov
  • Patent number: 9412579
    Abstract: A dynamically tunable process kit, a processing chamber having a dynamically tunable process kit, and a method for processing a substrate using a dynamically tunable process kit are provided. The dynamically tunable process kit allows one or both of the electrical and thermal state of the process kit to be changed without changing the physical construction of the process kit, thereby allowing plasma properties, and hence processing results, to be easily changed without replacing the process kit. The processing chamber having a dynamically tunable process kit includes a chamber body that includes a portion of a conductive side wall configured to be electrically controlled, and a process kit. The processing chamber includes a first control system operable to control one or both of an electrical and thermal state of the process kit and a second control system operable to control an electrical state of the portion of the side wall.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: August 9, 2016
    Assignee: Applied Materials, Inc.
    Inventors: S. M. Reza Sadjadi, Dmitry Lubomirsky, Hamid Noorbakhsh, John Zheng Ye, David H. Quach, Sean S. Kang
  • Patent number: 9384979
    Abstract: A method for depositing a conformal film on a substrate in a plasma processing chamber of a plasma processing system, the substrate being disposed on a chuck, the chuck being coupled to a cooling apparatus, is disclosed. The method includes flowing a first gas mixture into the plasma processing chamber at a first pressure, wherein the first gas mixture includes at least carbon, and wherein the first gas mixture has a condensation temperature. The method also includes cooling the chuck below the condensation temperature using the cooling apparatus thereby allowing at least some of the first gas mixture to condense on a surface of the substrate. The method further includes venting the first gas mixture from the processing chamber; flowing a second gas mixture into the plasma processing chamber, the second gas mixture being different in composition from the first gas mixture; and striking a plasma to form the conformal film.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 5, 2016
    Assignee: Lam Research Corporation
    Inventors: Dae-Han Choi, Jisoo Kim, Eric Hudson, Sangheon Lee, Conan Chiang, S. M. Reza Sadjadi
  • Publication number: 20160163511
    Abstract: Implementations described herein provide a magnetic ring which enables both lateral and azimuthal tuning of the plasma in a processing chamber. In one embodiment, the magnetic ring has a body. The body has a top surface and a bottom surface, and a plurality of magnets are disposed on the bottom surface of the body.
    Type: Application
    Filed: August 19, 2015
    Publication date: June 9, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Andrew NGUYEN, Tza-Jing GUNG, Haitao WANG, Maxim Mikhailovich NOGINOV, Reza SADJADI, Chunlei ZHANG, Xue YANG
  • Publication number: 20160027667
    Abstract: In some embodiments, a plasma processing apparatus includes a processing chamber to process a substrate; a mounting surface defined within the processing chamber to support a substrate disposed within the processing chamber; a showerhead disposed within the processing chamber and aligned so as to face the mounting surface, the showerhead defining a plurality of orifices to introduce a process gas into the processing chamber toward a substrate disposed within the processing chamber; and one or more magnets supported by the showerhead and arranged so that a radial component of a magnetic field applied by each of the one or more magnets has a higher flux density proximate a first region corresponding to an edge surface region of a substrate when disposed within the processing chamber than at a second region corresponding to an interior surface region of a substrate when disposed within the processing chamber.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 28, 2016
    Inventors: S. M. REZA SADJADI, HAITAO WANG, JIE ZHOU, TZA-JING GUNG, CHUNLEI ZHANG, FERNANDO M. SILVEIRA
  • Publication number: 20150311105
    Abstract: Implementations described herein provide a pixilated electrostatic chuck which enables both lateral and azimuthal tuning of the RF coupling between an electrostatic chuck and a substrate placed thereon. In one embodiment, the pixilated electrostatic chuck (ESC) may include a dielectric body having a workpiece support surface configured to accept a substrate thereon, one or more chucking electrodes disposed in the pixilated ESC, and a plurality of pixel electrodes. The plurality of pixel electrodes are switchable between a floating state and a grounded state, having variable capacitance to ground, or both. The pixel electrodes and the chucking electrodes form a circuit operable to electrostatically chuck the substrate to the workpiece support surface.
    Type: Application
    Filed: May 13, 2014
    Publication date: October 29, 2015
    Inventors: Reza SADJADI, Wendell Glen BOYD, JR., Vijay D. PARKHE, Maxim Mikhailovich NOGINOV
  • Patent number: 9111724
    Abstract: A chamber includes a lower electrode and an upper electrode. The lower electrode is defined to transmit a radiofrequency current through the chamber and to support a semiconductor wafer in exposure to a plasma within the chamber. The upper electrode is disposed above and in a spaced apart relationship with the lower electrode. The upper electrode is electrically isolated from the chamber and is defined by a central section and one or more annular sections disposed concentrically outside the central section. Adjacent sections of the upper electrode are electrically separated from each other by a dielectric material. Multiple voltage sources are respectively connected to the upper electrode sections. Each voltage source is defined to control an electric potential of the upper electrode section to which it is connected, relative to the chamber. The electric potential of each upper electrode section influences an electric potential of the plasma within the chamber.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: August 18, 2015
    Assignee: Lam Research Corporation
    Inventors: Douglas Keil, Lumin Li, Reza Sadjadi, Eric Hudson, Eric Lenz, Rajinder Dhindsa
  • Patent number: 8986492
    Abstract: A method for forming an array area with a surrounding periphery area, wherein a substrate is disposed under an etch layer, which is disposed under a patterned organic mask defining the array area and covers the entire periphery area is provided. The patterned organic mask is trimmed. An inorganic layer is deposited over the patterned organic mask where a thickness of the inorganic layer over the covered periphery area of the organic mask is greater than a thickness of the inorganic layer over the array area of the organic mask. The inorganic layer is etched back to expose the organic mask and form inorganic spacers in the array area, while leaving the organic mask in the periphery area unexposed. The organic mask exposed in the array area is stripped, while leaving the inorganic spacers in place and protecting the organic mask in the periphery area.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: March 24, 2015
    Assignee: Lam Research Corporation
    Inventors: S. M. Reza Sadjadi, Amit Jain
  • Patent number: 8911587
    Abstract: An apparatus for etching an etch layer formed on a substrate is provided. A first photoresist (PR) mask with first mask features is provided on the etch layer. The apparatus performs a process for providing a protective coating on the first PR mask. The process includes at least one cycle. Each cycle includes (a) a deposition phase for depositing a deposition layer over the surface of the first mask features using a deposition gas, and (b) a profile shaping phase for shaping the profile of the deposition layer using a profile shaping gas. A liquid PR material is applied over the first PR mask having the protective coating. The PR material is patterned into a second mask features, where the first and second mask features form a second PR mask. The etch layer is etched though the second PR mask.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 16, 2014
    Assignee: Lam Research Corporation
    Inventors: Andrew R. Romano, S. M. Reza Sadjadi
  • Patent number: 8864931
    Abstract: A method for etching a dielectric layer is provided. A patterned mask with mask features is formed over a dielectric layer. The mask has isolated areas and dense areas of the mask features. The mask is trimmed by a plurality of cycles, where each cycle includes depositing a deposition layer, and selectively etching the deposition layer and the patterned mask. The selective etching selectively trims the isolated areas of the mask with respect to the dense areas of the mask. The dielectric layer is etched using the thus trimmed mask. The mask is removed.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 21, 2014
    Assignee: Lam Research Corporation
    Inventors: Supriya Goyal, Dongho Heo, Jisoo Kim, S. M. Reza Sadjadi