Patents by Inventor Richard McCullough

Richard McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11767112
    Abstract: An aircraft is configured for thrust-borne lift in a vertical takeoff and landing flight mode and wing-borne lift in a forward flight mode. The aircraft includes an airframe having a first wing and a first payload station. A distributed propulsion system that is coupled to the airframe includes a plurality of propulsion assemblies configured to provide vertical thrust in the vertical takeoff and landing flight mode and forward thrust in the forward flight mode. A control system is operably associated with the distributed propulsion system and is operable to independently control each of the propulsion assemblies. A payload module is configured to be transported by the airframe from a pickup location to a delivery location. The payload module is magnetically coupled to the first payload station during transportation and, responsive to a command from the control system, is magnetically decoupled from the first payload station at the delivery location.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: September 26, 2023
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 11767006
    Abstract: A rotor assembly for generating thrust for a vehicle. The rotor assembly includes a rotor hub and a plurality of rotor blade assemblies coupled to the rotor hub. Each rotor blade assembly includes a metallic bearing race, a composite rotor blade and a metallic coupling assembly. The composite rotor blade has a root section with a radially outwardly tapered outer surface. The metallic coupling assembly has a radially inwardly tapered inner surface that receives the radially outwardly tapered outer surface of the root section of the rotor blade therein to provide a centrifugal force seat for the rotor blade. The coupling assembly includes at least two circumferentially distributed coupling members. The coupling assembly is configured to couple the rotor blade to the bearing race and to provide a centrifugal force load path therebetween.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: September 26, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Andrew Ryan Maresh, John Richard McCullough, Robert Patrick Wardlaw, Paul K. Oldroyd
  • Publication number: 20230192288
    Abstract: An aircraft includes an airframe having at least one wing. A distributed propulsion system is attached to the airframe and includes first and second pluralities of propulsion assemblies. In a vertical takeoff and landing flight mode, each of the propulsion assemblies generates vertical thrust with rotor assemblies of the first plurality of propulsion assemblies rotating in a horizontal plane and rotor assemblies of the second plurality of propulsion assemblies rotating in a parallel horizontal plane. In a forward flight mode, each of the propulsion assemblies generates forward thrust with the rotor assemblies of the first plurality of propulsion assemblies rotating in a vertical plane and the rotor assemblies of the second plurality of propulsion assemblies rotating in a parallel vertical plane. In both the vertical takeoff and landing flight mode and the forward flight mode, a pod assembly coupled to the airframe remains in a generally horizontal attitude.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 22, 2023
    Applicant: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Publication number: 20230192294
    Abstract: An aircraft is configured for thrust-borne lift in a vertical takeoff and landing flight mode and wing-borne lift in a forward flight mode. The aircraft includes an airframe having a first wing and a first payload station. A distributed propulsion system that is coupled to the airframe includes a plurality of propulsion assemblies configured to provide vertical thrust in the vertical takeoff and landing flight mode and forward thrust in the forward flight mode. A control system is operably associated with the distributed propulsion system and is operable to independently control each of the propulsion assemblies. A payload module is configured to be transported by the airframe from a pickup location to a delivery location. The payload module is magnetically coupled to the first payload station during transportation and, responsive to a command from the control system, is magnetically decoupled from the first payload station at the delivery location.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Applicant: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Publication number: 20230192255
    Abstract: A rotor assembly for generating vehicle thrust. The rotor assembly includes a rotor hub with a plurality of rotor blade assemblies coupled thereto. Each rotor blade assembly includes a metallic bearing race, a composite rotor blade and a split collet assembly. The split collet assembly includes two circumferentially distributed collet members each having an inner inboard conical seat configured to mate with a radially outwardly extending conical feature of the bearing race and an inner outboard conical seat configured to mate with a radially outwardly extending conical feature of the rotor blade. The split collet assembly also includes an outer sleeve having an inner conical surface that mates with outer conical surfaces of the collet members to maintain the collet members in a circumferential orientation around the bearing race and the rotor blade such that the split collet assembly provides a centrifugal force load path therebetween.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Applicant: Textron Innovations Inc.
    Inventors: Paul K. Oldroyd, John Richard McCullough
  • Patent number: 11650604
    Abstract: An aircraft includes an airframe with first and second wings having a fuselage extending therebetween. A propulsion assembly is coupled to the fuselage and includes a counter-rotating coaxial rotor system that is tiltable relative to the fuselage to generate a thrust vector. First and second yaw vanes extend aftwardly from the fuselage. A flight control system is configured to direct the thrust vector of the coaxial rotor system and control movements of the yaw vanes. In a VTOL orientation of the aircraft, differential operation of the yaw vanes and/or differential operations of first and second rotor assemblies of the coaxial rotor system provide yaw authority for the aircraft. In a biplane orientation of the aircraft, collective operation of the yaw vanes provides yaw authority for the aircraft.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: May 16, 2023
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Andrew Thomas Carter, Sung Kyun Kim, Matthew John Hill
  • Patent number: 11649061
    Abstract: An aircraft has multiple independent yaw authority mechanisms. The aircraft includes an airframe having first and second wings with at least first and second pylons extending therebetween and with a plurality of tail members extending therefrom each having an active control surface. A two-dimensional distributed thrust array is coupled to the airframe that includes a plurality of propulsion assemblies each having a rotor assembly and each operable for thrust vectoring. A flight control system is operable to independently control each of the propulsion assemblies. A first yaw authority mechanism includes differential speed control of rotor assemblies rotating clockwise compared to rotor assemblies rotating counterclockwise. A second yaw authority mechanism includes differential longitudinal control surface maneuvers of control surfaces of two symmetrically disposed tail members. A third yaw authority mechanism includes differential thrust vectoring of propulsion assemblies.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: May 16, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Paul K. Oldroyd, John Richard McCullough
  • Publication number: 20230145902
    Abstract: A rotor assembly for generating thrust for a vehicle. The rotor assembly includes a rotor hub and a plurality of rotor blade assemblies coupled to the rotor hub. Each rotor blade assembly includes a metallic bearing race, a composite rotor blade and a metallic coupling assembly. The composite rotor blade has a root section with a radially outwardly tapered outer surface. The metallic coupling assembly has a radially inwardly tapered inner surface that receives the radially outwardly tapered outer surface of the root section of the rotor blade therein to provide a centrifugal force seat for the rotor blade. The coupling assembly includes at least two circumferentially distributed coupling members. The coupling assembly is configured to couple the rotor blade to the bearing race and to provide a centrifugal force load path therebetween.
    Type: Application
    Filed: February 22, 2022
    Publication date: May 11, 2023
    Applicant: Textron Innovations Inc.
    Inventors: Andrew Ryan Maresh, John Richard McCullough, Robert Patrick Wardlaw, Paul K. Oldroyd
  • Patent number: 11608173
    Abstract: A package delivery system uses unmanned aircraft operable to transition between thrust-borne lift in a VTOL configuration and wing-borne lift in a forward flight configuration. Each of the aircraft includes an airframe having at least one wing with a distributed thrust array coupled to the airframe. The distributed thrust array includes a plurality of propulsion assemblies configured to provide vertical thrust in the VTOL configuration and a plurality of propulsion assemblies configured to provide forward thrust in the forward flight configuration. A package delivery module is coupled to the airframe. A control system is operably associated with the distributed thrust array and the package delivery module. The control system is configured to individually control each of the propulsion assemblies and control package release operations of the package delivery module. The system includes a ground station configured to remotely communicate with the control systems of the aircraft during package delivery missions.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: March 21, 2023
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 11603194
    Abstract: An aircraft having a high efficiency forward flight mode. The aircraft includes an airframe having at least one wing. A distributed propulsion system is attached to the airframe and includes a first plurality of propulsion assemblies and a second plurality of propulsion assemblies. A flight control system is operably associated with the distributed propulsion system and is operable to independently control each of the propulsion assemblies. The aircraft is configured for thrust-borne lift in a vertical takeoff and landing flight mode and wing-borne lift in the forward flight mode. In the vertical takeoff and landing flight mode, each of the propulsion assemblies is configured to generate vertical thrust. In the forward flight mode, the propulsion assemblies of the first plurality of propulsion assemblies are configured to generate forward thrust and the propulsion assemblies of the second plurality of propulsion assemblies are configured to shut down.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: March 14, 2023
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 11548608
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 10, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Joseph Scott Drennan, Carlos Alexander Fenny, Michael John Ryan, John Richard McCullough, Brett Rodney Zimmerman
  • Patent number: 11505302
    Abstract: A rotor assembly for an aircraft operable to generate a variable thrust output at a constant rotational speed. The rotor assembly includes a mast rotatable at the constant speed about a mast axis. A rotor hub is coupled to and rotatable with the mast. The rotor hub includes a plurality of spindle grips extending generally radially outwardly. Each of the spindle grips is coupled to one of a plurality of rotor blades and is operable to rotate therewith about a pitch change axis. A collective pitch control mechanism is coupled to and rotatable with the rotor hub. The collective pitch control mechanism is operably associated with each spindle grip such that actuation of the collective pitch control mechanism rotates each spindle grip about the respective pitch change axis to collectively control the pitch of the rotor blades, thereby generating the variable thrust output.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: November 22, 2022
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 11479352
    Abstract: An aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft has an airframe including first and second wings with a fuselage extending therebetween. A propulsion assembly is coupled to the fuselage and includes a counter-rotating coaxial rotor system that is tiltable relative to the fuselage to generate a thrust vector. A flight control system is configured to direct the thrust vector. In the VTOL orientation, the first wing is forward of the fuselage, the second wing is aft of the fuselage and the coaxial rotor system is configured to provide thrust in line with a yaw axis of the aircraft. In the biplane orientation, the first wing is below the fuselage, the second wing is above the fuselage and the coaxial rotor system is configured to provide thrust in line with a roll axis of the aircraft.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: October 25, 2022
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Andrew Thomas Carter, Sung Kyun Kim, Matthew John Hill, Lynn Francis Eschete
  • Patent number: 11479354
    Abstract: A propulsion assembly for an aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The propulsion assembly includes a housing coupled to the fuselage of the aircraft. A coaxial rotor system includes a first rotor assembly and a second rotor assembly that are rotatable about a common axis of rotation. The first rotor assembly counter-rotates relative to the second rotor assembly. A motor assembly is operably associated with the coaxial rotor system. The motor assembly provides torque and rotational energy to the first rotor assembly and the second rotor assembly. A gimbal assembly couples the coaxial rotor system to the housing such that the coaxial rotor system is tiltable relative to the fuselage to generate a thrust vector.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: October 25, 2022
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Andrew Thomas Carter, Sung Kyun Kim, Matthew John Hill
  • Patent number: 11479353
    Abstract: An aircraft includes an airframe with first and second wings having a fuselage extending therebetween. A propulsion assembly is coupled to the fuselage and includes a counter-rotating coaxial rotor system that is tiltable relative to the fuselage to generate a thrust vector. Tail assemblies are coupled to wingtips of the first and second wings each having an elevon that collectively form a distributed array of elevons. A flight control system is configured to direct the thrust vector of the coaxial rotor system and to control movements of the elevons such that the elevons collectively provide pitch authority and differentially provide roll authority for the aircraft in the biplane orientation. In addition, when the flight control system detects an elevon fault, the flight control system is configured to perform corrective action responsive thereto at a distributed elevon level or at a coordinated distributed elevon and propulsion assembly level.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: October 25, 2022
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Andrew Thomas Carter, Sung Kyun Kim, Matthew John Hill
  • Patent number: 11459099
    Abstract: An aircraft has a vertical takeoff and landing fight mode and a forward flight mode. The aircraft includes an airframe with first and second M-wings having first and second pylons extending therebetween, each M-wing forming a pair of leading apexes with swept forward and swept back portions extending therefrom at a swept angle. A propulsion system includes a plurality of propulsion assemblies each attached to the airframe proximate one of the leading apexes. Each of the propulsion assemblies includes a rotor assembly having a tilting degree of freedom. A flight control system is operable to control the propulsion assemblies including tilting the rotor assemblies to generate variable thrust vectors. In the vertical takeoff and landing fight mode, the aircraft operates responsive to thrust-borne lift from the propulsion system. In the forward flight mode, the aircraft operates responsive to wing-borne lift in a biplane orientation.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 4, 2022
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Publication number: 20220291697
    Abstract: An aircraft includes an airframe with first and second wings having a fuselage extending therebetween. A propulsion assembly is coupled to the fuselage and includes a counter-rotating coaxial rotor system that is tiltable relative to the fuselage to generate a thrust vector. First and second yaw vanes extend aftwardly from the fuselage. A flight control system is configured to direct the thrust vector of the coaxial rotor system and control movements of the yaw vanes. In a VTOL orientation of the aircraft, differential operation of the yaw vanes and/or differential operations of first and second rotor assemblies of the coaxial rotor system provide yaw authority for the aircraft. In a biplane orientation of the aircraft, collective operation of the yaw vanes provides yaw authority for the aircraft.
    Type: Application
    Filed: April 13, 2022
    Publication date: September 15, 2022
    Applicant: Textron Innovations Inc.
    Inventors: John Richard McCullough, Andrew Thomas Carter, Sung Kyun Kim, Matthew John Hill
  • Patent number: 11440649
    Abstract: A propulsion assembly for a rotorcraft includes a blade assembly, a drive shaft coupled to the blade assembly and an electric motor coupled to the drive shaft and operable to provide rotational energy to the drive shaft to rotate the blade assembly. The propulsion assembly includes a landing assistance turbine coupled to the drive shaft and operable to selectively provide rotational energy to the drive shaft during an underpowered descent to rotate the blade assembly and provide upward thrust, thereby reducing a descent rate of the rotorcraft prior to landing.
    Type: Grant
    Filed: December 26, 2020
    Date of Patent: September 13, 2022
    Assignee: Textron Innovations Inc.
    Inventors: Frank Bradley Stamps, Michael K. McNair, John Richard McCullough
  • Patent number: 11414199
    Abstract: A line-replaceable thrust module includes a nacelle configured to be mechanically connected to an anchoring location of an unmanned aerial vehicle (UAV), an electric motor coupled to the nacelle, an electric speed controller configured to control the speed of the electric motor and configured to be electrically connected to a communication network of the UAV, and a fuel cell system configured to produce electrical energy from an electrochemical reaction between hydrogen and oxygen. The fuel cell system includes a fuel cell, a hydrogen tank, a pressure regulator coupled to the hydrogen tank, and a supply line coupled between the pressure regulator and the fuel cell.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 16, 2022
    Assignee: Textron Innovations Inc.
    Inventors: Joseph Dean Rainville, John Richard McCullough
  • Patent number: 11383823
    Abstract: An aircraft has an airframe with a distributed thrust array attached thereto that includes a plurality of propulsion assemblies each of which is independently controlled by a flight control system. Each propulsion assembly includes a housing with a single axis gimbal coupled thereto and operable to tilt about a single axis. A propulsion system is coupled to and operable to tilt with the gimbal. The propulsion system includes an electric motor having an output drive and a rotor assembly having a plurality of rotor blades that rotate in a rotational plane to generate thrust having a thrust vector with a direction. Actuation of each gimbal is operable to tilt the respective propulsion system including the electric motor and the rotor assembly relative to the airframe to change the rotational plane of the respective rotor assembly relative to the airframe, thereby controlling the direction of the respective thrust vector.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: July 12, 2022
    Assignee: Textron Innovations Inc.
    Inventors: Paul K. Oldroyd, John Richard McCullough