Patents by Inventor Richard McCullough

Richard McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10689091
    Abstract: A wing airframe for a wing of a tiltrotor aircraft includes a wing airframe core assembly and a wing skin assembly disposed on the wing airframe core assembly. The wing skin assembly includes a lower wing skin assembly disposed on the bottom side of the wing airframe core assembly. The tiltrotor aircraft includes a fuselage underneath the wing. The lower wing skin assembly has one or more buckle zones outboard of the fuselage. The buckle zones are locally susceptible to buckling in response to an impact of the tiltrotor aircraft, thereby protecting the fuselage from being crushed by the wing.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: June 23, 2020
    Assignee: Textron Innovations Inc.
    Inventors: Andrew G. Baines, James Everett Kooiman, George Ryan Decker, John Richard McCullough
  • Patent number: 10661892
    Abstract: An aircraft having omnidirectional ground maneuver capabilities. The aircraft includes an airframe and a plurality of propulsion assemblies attached to the airframe. Each of the propulsion assemblies includes a nacelle having a mast axis, a rotor assembly having a tilting degree of freedom relative to the mast axis and a tail assembly rotatable about the mast axis. The tail assembly includes at least one wheel having a rotational axis. A flight control system is operable to independently control each of the propulsion assemblies including tilting each rotor assembly and rotating each tail assembly. For each propulsion assembly, the rotor assembly and the tail assembly have complementary configurations in which a thrust vector generated by the rotor assembly has a horizontal component that is generally perpendicular to the rotational axis of the wheel, thereby enabling omnidirectional ground maneuvers.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: May 26, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10633088
    Abstract: An aerial imaging aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft includes an airframe having first and second wings with first and second pylons coupled therebetween. The airframe has a longitudinal axis and a lateral axis in the VTOL orientation. A two-dimensional distributed thrust array is coupled to the airframe. The thrust array includes a plurality of propulsion assemblies each operable for variable speed and omnidirectional thrust vectoring. A payload is coupled to the airframe and includes an aerial imaging module. A flight control system is operable to independently control the speed and thrust vector of each of the propulsion assemblies such that in a level or inclined flight attitude, the flight control system is operable to maintain the orientation of the aerial imaging module toward a focal point of a ground object while translating the aircraft.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 28, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10633087
    Abstract: An aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft includes an airframe having first and second wings with first and second pylons coupled therebetween. The airframe has a longitudinal axis and a lateral axis in hover. A two-dimensional distributed thrust array is coupled to the airframe. The thrust array includes a plurality of propulsion assemblies each operable for variable speed and omnidirectional thrust vectoring. A flight control system is operable to independently control the speed and thrust vector of each of the propulsion assemblies such that in an inclined flight attitude with at least one of the longitudinal axis and the lateral axis extending out of a horizontal plane, the flight control system is operable to maintain hover stability responsive to controlling the speed and the thrust vector of the propulsion assemblies.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 28, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10625853
    Abstract: Systems and methods for automated configuration of mission specific aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 21, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Publication number: 20200115053
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Joseph Scott DRENNAN, Carlos Alexander FENNY, Michael John RYAN, John Richard MCCULLOUGH, Brett Rodney ZIMMERMAN
  • Publication number: 20200115054
    Abstract: An example of a maneuverable capture device includes a frame, a plurality of rotors secured to the frame, an attachment point disposed on the frame for securing a cable of a carrier aircraft to the frame, and an attachment feature configured to secure maneuverable capture device to a dock of a parasite aircraft. An example of a method of docking a maneuverable capture device with a parasite aircraft includes positioning a carrier aircraft above a parasite aircraft, releasing the maneuverable capture device attached to the carrier aircraft by a cable from the carrier aircraft, flying the maneuverable capture device to a dock of the parasite aircraft, and securing the maneuverable capture device to the dock of the parasite aircraft.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Michael John RYAN, Carlos Alexander Fenny, Joseph Scott Drennan, John Richard McCullough, Brett Rodney Zimmerman
  • Publication number: 20200115052
    Abstract: A system for deploying and retrieving a parasite aircraft includes a parasite aircraft with a dock and a carrier aircraft that includes a maneuverable capture device tethered to the carrier aircraft via a cable. The maneuverable capture device includes a plurality of rotors and is configured to dock in the dock of the parasite aircraft. A method of deploying a parasite aircraft includes positioning a parasite aircraft on a loading surface; positioning a carrier aircraft above the parasite aircraft; releasing, from the carrier aircraft, a maneuverable capture device comprising a plurality of rotors; securing the maneuverable capture device to a dock positioned on the parasite aircraft; lifting, via a cable secured at a first end to the carrier aircraft and at a second end to the maneuverable capture device, the parasite aircraft with the carrier aircraft; and releasing the parasite aircraft from the maneuverable capture device.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Carlos Alexander FENNY, Joseph Scott DRENNAN, Michael John RYAN, John Richard MCCULLOUGH, Brett Rodney ZIMMERMAN
  • Patent number: 10618647
    Abstract: A mission configurable aircraft operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft includes an airframe having first and second wings with first and second pylons extending therebetween. A two-dimensional distributed thrust array is attached to the airframe. The thrust array including a plurality of inboard propulsion assemblies coupled to first and second inboard nacelle stations of the first and second wings. The thrust array also includes a plurality of outboard propulsion assemblies coupled to first and second outboard nacelle stations of the first and second wings. A flight control system is operable to independently control each of the propulsion assemblies. A payload is coupled to the airframe. The inboard propulsion assemblies have a thrust type that is different from the thrust type of the outboard propulsion assemblies.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 14, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10618646
    Abstract: A rotor assembly for an aircraft is operable to generate a variable thrust vector. The rotor assembly includes a mast that is rotatable about a mast axis. A ball joint is positioned about and non rotatable with the mast. A tilt control assembly is positioned on and has a tilting degree of freedom relative to the ball joint. The tilt control assembly is non rotatable with the mast. A rotor hub is rotatably coupled to the tilt control assembly. The rotor hub is rotatable with the mast in a rotational plane and tiltable with the tilt control assembly. The rotor hub includes a plurality of grips each coupled to a rotor blade. Actuation of the tilt control assembly changes the rotational plane of the rotor hub relative to the mast axis, thereby generating the variable thrust vector.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 14, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd, Mark Adam Wiinikka, Jouyoung Jason Choi
  • Publication number: 20200108921
    Abstract: An aircraft has an airframe including first and second wings with first and second pylons extending therebetween forming a closed wing. A distributed propulsion system attached to the airframe includes a plurality of propulsion assemblies that are independently controlled by a flight control system. A pod assembly is coupled to the airframe such that, in a VTOL flight mode, the first wing and at least two of the propulsion assemblies are forward of the pod assembly, the second wing and at least two of the propulsion assemblies are aft of the pod assembly and the pylons are lateral of the pod assembly. In addition, in a forward flight mode, the first wing and at least two of the propulsion assemblies are below the pod assembly, the second wing and at least two of the propulsion assemblies are above the pod assembly and the pylons are lateral of the pod assembly.
    Type: Application
    Filed: July 30, 2019
    Publication date: April 9, 2020
    Applicant: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10611477
    Abstract: An aircraft has an airframe including first and second wings with first and second pylons extending therebetween forming a closed wing. A distributed propulsion system attached to the airframe includes a plurality of propulsion assemblies that are independently controlled by a flight control system. A pod assembly is coupled to the airframe such that, in a VTOL flight mode, the first wing and at least two of the propulsion assemblies are forward of the pod assembly, the second wing and at least two of the propulsion assemblies are aft of the pod assembly and the pylons are lateral of the pod assembly. In addition, in a forward flight mode, the first wing and at least two of the propulsion assemblies are below the pod assembly, the second wing and at least two of the propulsion assemblies are above the pod assembly and the pylons are lateral of the pod assembly.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 7, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10604249
    Abstract: A man portable aircraft system includes first and second wings with first and second pylons couplable between pylon stations thereof to form an airframe. Each of a plurality of propulsion assemblies is couplable to one of a plurality of nacelle stations of the wings to form a two-dimensional distributed thrust array. A flight control system is couplable to the airframe and is operable to independently control each of the propulsion assemblies. A payload is couplable between payload stations of the first and second pylons. A man portable container is operable to receive the wings, pylons, propulsion assemblies, flight control system and payload in a disassembled configuration. The connections between the wings, pylons, propulsion assemblies and payload are operable for rapid in-situ assembly. In an assembled configuration, the aircraft is operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: March 31, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10597164
    Abstract: An aircraft has an airframe with a two-dimensional distributed thrust array attached thereto having a plurality of propulsion assemblies that are independently controlled by a flight control system. Each propulsion assembly includes a housing with a gimbal coupled thereto that is operable to tilt about first and second axes responsive to first and second actuators. A propulsion system is coupled to and operable to tilt with the gimbal. The propulsion system includes an electric motor having an output drive and a rotor assembly having a plurality of rotor blades that rotate in a rotational plane to generate thrust having a thrust vector. Responsive to a thrust vector error of a first propulsion assembly, the flight control system commands at least a second propulsion assembly, that is symmetrically disposed relative to the first propulsion assembly, to counteract the thrust vector error, thereby providing redundant directional control for the aircraft.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 24, 2020
    Assignee: Textron Innovations Inc.
    Inventors: Paul K. Oldroyd, John Richard McCullough
  • Patent number: 10583921
    Abstract: An aircraft has an airframe with first and second wings having first and second pylons extending therebetween. A distributed propulsion system attached to the airframe includes a plurality of propulsion assemblies that are independently controlled by a flight control system. A pod assembly is coupled to the airframe. In a VTOL flight mode, the first wing is forward of the pod assembly and the second wing is aft of the pod assembly. In a forward flight mode, the first wing is below the pod assembly and the second wing is above the pod assembly. In both the VTOL flight mode and the forward flight mode, a first pair of symmetrically disposed propulsion assemblies generates thrust having a first direction while a second pair of symmetrically disposed propulsion assemblies generates thrust having a second direction that is different from the first direction.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: March 10, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Publication number: 20200062384
    Abstract: An aircraft is operable to transition between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft includes an airframe having first and second wings with first and second pylons extending therebetween forming a central region. A two-dimensional distributed thrust array and a flight control system are coupled to the airframe. A nose cone and an afterbody are each selectively coupled to the airframe. In a cargo delivery flight configuration, the nose cone and the afterbody are coupled to the airframe such that the nose cone and the afterbody each extend between the first and second wings and between first and second pylons to form a cargo enclosure with an aerodynamic outer shape. In a minimal drag flight configuration, the nose cone and the afterbody are not coupled to the airframe such that air passes through the central region during flight.
    Type: Application
    Filed: May 30, 2019
    Publication date: February 27, 2020
    Applicant: Bell Textron Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd, Glenn Edward Isbell, JR., Matthew John Hill
  • Publication number: 20200023829
    Abstract: Systems and methods include providing vertical takeoff and landing (VTOL) aircraft with a cargo pod having a selectively inflatable bladder system that firmly secures a payload disposed within the cargo pod when the bladder system is pressurized. The bladder system also controls the location, position, and/or orientation of the payload in order to adjust, control, and/or maintain the center of gravity of the aircraft during flight. The aircraft includes an impact protection system that further pressurizes the bladder system to protect the payload and/or that disperses a flame-retardant fluid into the cargo pod to protect electrical components of the aircraft. The aircraft is fully autonomous and self-directed via a preprogrammed location-based guidance system to allow for accurate delivery of the payload to its intended destination. The bladder system is depressurized in response to a landing event to allow for e f the payload from the cargo pod.
    Type: Application
    Filed: July 20, 2018
    Publication date: January 23, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Levi Charles Hefner, John Richard McCullough
  • Patent number: 10538317
    Abstract: In some embodiments, a rotorcraft includes an engine, a rotor hub assembly mechanically coupled to the engine and a plurality of rotor blade assemblies rotatably mounted to the rotor hub assembly. Each of the rotor blade assemblies includes a rotor blade having a leading edge and an erosion shield system extending spanwise along the leading edge of the rotor blade. The erosion shield system includes a plurality of erosion shield segments positioned adjacent to one another forming joints therebetween wherein, the joints deform responsive to strain experienced by the rotor blade, thereby isolating the erosion shield segments from at least a portion of the strain experienced by the rotor blade.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: January 21, 2020
    Assignee: Textron Innovations Inc.
    Inventors: Jeffrey Paul Nissen, John Richard McCullough
  • Publication number: 20190375499
    Abstract: An aircraft includes an airframe and a distributed thrust array coupled to the airframe including at least six propulsion assemblies. A flight control system is operably associated with the distributed thrust array and is operable to independently control each of the propulsion assemblies. A package delivery module is coupled to the airframe. In a VTOL orientation utilizing thrust-borne lift, a first pair of propulsion assemblies is forward of the package delivery module, a second pair of propulsion assemblies is aft of the package delivery module and a third pair of propulsion assemblies is lateral of the package delivery module. In a forward flight orientation utilizing wing-borne lift, the first pair of propulsion assemblies is below the package delivery module, the second pair of propulsion assemblies is above the package delivery module and the third pair of propulsion assemblies is lateral of the package delivery module.
    Type: Application
    Filed: July 30, 2019
    Publication date: December 12, 2019
    Applicant: Bell Textron Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd
  • Patent number: 10501193
    Abstract: An aircraft having a vertical takeoff and landing fight mode and a forward flight mode. The aircraft includes an airframe and a versatile propulsion system attached to the airframe. The versatile propulsion system includes a plurality of propulsion assemblies. A flight control system is operable to independently control the propulsion assemblies. The propulsion assemblies are interchangeably attachable to the airframe such that the aircraft has a liquid fuel flight mode and an electric flight mode. In the liquid fuel flight mode, energy is provided to each of the propulsion assemblies from a liquid fuel. In the electric flight mode, energy is provided to each of the propulsion assemblies from an electric power source.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: December 10, 2019
    Assignee: Textron Innovations Inc.
    Inventors: Paul K. Oldroyd, John Richard McCullough