Patents by Inventor Richard T. Behrens

Richard T. Behrens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7567637
    Abstract: A wireless communication system is provided that detects a frequency burst (FB) through analysis of the autocorrelation function of received signals. The system can accommodate the relatively large frequency offsets that are associated with less expensive reference frequency crystals. In one embodiment, the system includes FB search hardware that operates in two modes, namely an FB location mode with narrowband interference (e.g. CW or continuous wave) detection and an FB location mode without such narrowband interference detection, depending on whether a CW signal (carrier or other narrowband interferer) is present or not.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: July 28, 2009
    Assignee: ST-Ericsson SA
    Inventors: Jing Liang, Marvin L. Vis, Richard T. Behrens
  • Publication number: 20080285549
    Abstract: A synchronous read channel having a single chip integrated circuit digital portion which provides digital gain control, timing recovery, equalization, digital peak detection, sequence detection, RLL(1,7) encoding and decoding, error-tolerant synchronization and channel quality measurement is disclosed. The integrated circuit accommodates both center sampling and side sampling, and has a high degree of programmability of various pulse shaping and recovery parameters and the ability to provide decoded data using sequence detection or digital peak detection. These characteristics, together with the error-tolerant sync mark detection and the ability to recover data when the sync mark is obliterated, allow a wide variety of retry and recovery strategies to maximize the possibility of data recovery.
    Type: Application
    Filed: May 23, 2008
    Publication date: November 20, 2008
    Applicant: Broadcom Corporation
    Inventors: Richard T. Behrens, Kent D. Anderson, Alan J. Armstrong, Trent Dudley, Bill R. Foland, Neal Glover, Larry D. King
  • Publication number: 20080232480
    Abstract: Receiver architectures and related methods are disclosed for high definition (HD) and digital radio FM broadcast receivers. The radio receiver architectures are configured to utilize multiple analog-to-digital converters (ADCs) to handle the digital radio spectrum and can be configured to modify a target IF frequencies depending upon the mode of operation of the receiver. For example, the receiver can include an analog FM reception mode and a digital FM reception mode for which different down-conversions are used for the same analog-plus-digital audio broadcast channel. If desired, the radio broadcast receivers disclosed can be configured so that they only receive digital FM radio content, for example, if the analog FM broadcast was of no interest and/or if the broadcast was all digital.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Inventors: G. Tyson Tuttle, Dan B. Kasha, Wade R. Gillham, Richard T. Behrens
  • Publication number: 20080139157
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 12, 2008
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Shankar Srinivasan
  • Patent number: 7379452
    Abstract: A synchronous read channel having a single chip integrated circuit digital portion which provides digital gain control, timing recovery, equalization, digital peak detection, sequence detection, RLL(l,7) encoding and decoding, error-tolerant synchronization and channel quality measurement is disclosed. The integrated circuit accommodates both center sampling and side sampling, and has a high degree of programmability of various pulse shaping and recovery parameters and the ability to provide decoded data using sequence detection or digital peak detection. These characteristics, error-tolerant sync mark detection, and the ability to recover data when the sync mark is obliterated allow a wide variety of retry and recovery strategies to maximize the possibility of data recovery.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 27, 2008
    Assignee: Broadcom Corporation
    Inventors: Richard T. Behrens, Kent D. Anderson, Alan J. Armstrong, Trent Dudley, Bill R. Foland, Neal Glover, Larry D. King
  • Patent number: 7366478
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 29, 2008
    Assignee: Silicon Laboratories Inc.
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Shankar Srinivasan
  • Patent number: 7242912
    Abstract: Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 10, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: James Maligeorgos, Augusto M. Marques, Lysander Lim, G. Tyson Tuttle, Aslamali A. Rafi, Tod Paulus, Gregory T. Uehara, Jeffrey W. Scott, Richard T. Behrens, Donald A. Kerth, G. Diwakar Vishakhadatta, Vishnu S. Srinivasan, Caiyi Wang
  • Patent number: 7228109
    Abstract: A radio-frequency receiver circuitry includes a down-converter circuitry, an analog-to-digital converter circuitry, and a DC offset reduction circuitry. The down-converter circuitry accepts a received radio-frequency signal and processes the radio-frequency signal to provide an in-phase down-converted signal and a quadrature down-converted signal to the analog-to-digital converter circuitry. The analog-to-digital converter circuitry converts the in-phase and quadrature down-converted signals to an in-phase digital output signal and a quadrature digital output signal, respectively. The DC offset reduction circuitry couples to the analog-to-digital converter circuitry, and tends to reduce a DC offset transmitted to the in-phase and quadrature digital output signals.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: June 5, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: Tod Paulus, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7221921
    Abstract: Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 22, 2007
    Assignee: Silicon Laboratories
    Inventors: James Maligeorgos, Augusto M. Marques, Lysander Lim, G. Tyson Tuttle, Aslamali A. Rafi, Tod Paulus, Gregory T. Uehara, Jeffrey W. Scott, Richard T. Behrens, Donald A. Kerth, G. Diwakar Vishakhadatta, Vishnu S. Srinivasan, Caiyi Wang
  • Patent number: 7177610
    Abstract: A low-noise current reference circuitry includes a voltage source, a current source, and a controller. The voltage source generates a reference voltage. The current source provides a low-noise output current in response to a control signal. The controller provides the control signal based at least in part on the relative magnitudes of the reference voltage and a voltage derived from the output current. A low-noise voltage reference circuitry includes a reference voltage source, a voltage source, and a controller. The reference voltage source generates a reference voltage. The voltage source provides a low-noise output voltage in response to a control signal. The controller provides the control signal based at least in part on the relative magnitudes of the output voltage and the reference voltage.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: February 13, 2007
    Assignee: Silicon Laboratories Inc.
    Inventors: Jeffrey W. Scott, G. Diwakar Vishakhadatta, Donald A. Kerth, Richard T. Behrens, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7138858
    Abstract: A buffer circuitry buffers a radio-frequency (RF) signal. The buffer circuitry includes a complementary pair of switches and a power source. The a complementary pair of switches has an input terminal and output terminal. The input terminal of the complementary pair of switches responds to the RF signal. The output terminal of the complementary pair of switches couples to an output of the buffer circuitry. The power source includes a capacitor coupled to a current source. The power source couples to the complementary pair of switches. The power source supplies power to the complementary pair of switches in a manner that the buffer circuitry supplies a substantially constant power level at its output.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: November 21, 2006
    Assignee: Silicon Laboratories, Inc.
    Inventors: Augusto M. Marques, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7092675
    Abstract: A radio-frequency (RF) apparatus capable of transmitting RF signals includes transmitter path circuitry. The transmitter path circuitry includes a voltage-controlled oscillator (VCO) that generates an output signal. The frequency of the output signal of the VCO circuitry is adjustable in response to a first control signal and a second control signal. The transmitter path circuitry also includes a first feedback circuitry and a second feedback circuitry that are responsive to the output signal of the VCO circuitry. The first feedback circuitry provides the first control signal to the VCO circuitry. The first control signal coarsely adjusts the frequency of the output signal of the VCO circuitry to a desired frequency. The second feedback circuitry supplies the second control signal to the VCO circuitry. The second control signal fine tunes the frequency of the output signal of the voltage-controlled oscillator circuitry to the desired frequency.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: August 15, 2006
    Assignee: Silicon Laboratories
    Inventors: Lysander Lim, Caiyi Wang, David R. Welland, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7035611
    Abstract: A radio-frequency (RF) apparatus includes front-end circuitry. The front-end circuitry includes a filter circuitry and an impedance matching circuitry. The filter circuitry has a differential output that has an output impedance. The filter circuitry filters signals outside a signal band of interest. The impedance matching network has a differential input coupled to the output of the filter circuitry. The impedance matching network also has a differential output coupled to a signal processing circuitry. The signal processing circuitry has an input impedance. The impedance matching network matches the input impedance of the signal processing circuitry to the output impedance of the filter circuitry.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: April 25, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Eric R. Garlepp, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7031683
    Abstract: A calibration circuitry includes an adjustable capacitor, a voltage generator, a reference voltage generator, and a controller. The reference voltage generator provides a reference voltage. The voltage generator provides a measurement voltage that depends on the capacitance of the adjustable capacitor. The capacitance of the adjustable capacitor varies in response to a control signal. The controller provides the control signal based on the relative values of the reference voltage and the measurement voltage.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: April 18, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Diwakar Vishakhadatta, Donald A. Kerth, Russell Croman, Jeffrey W. Scott, Richard T. Behrens, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 7024221
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry coupled together. The receiver analog circuitry receives an RF signal. The receiver analog circuitry processes the received RF signal and generates a digital signal that it provides to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal provided by a receiver analog circuitry with a digital intermediate frequency (IF) local oscillator signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal. The digital filter circuitry provides a notch at a frequency that corresponds to a residual DC offset of the receiver analog circuitry.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: April 4, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Tod Paulus, Richard T. Behrens, Vishnu S. Srinivasan, Mark S. Spurbeck, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 6993314
    Abstract: A radio-frequency (RF) apparatus capable of transmitting RF signals includes transmitter path circuitry. The transmitter path circuitry includes a voltage-controlled oscillator (VCO) circuitry. The VCO circuitry generates a first signal that has a first frequency. A divider circuitry couples to the VCO circuitry and, in response to the first signal, the divider circuitry generates a second signal that has a second frequency. The frequency of the second signal equals the frequency of the first signal divided by a number.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: January 31, 2006
    Assignee: Silicon Laboratories Inc.
    Inventors: Lysander Lim, Caiyi Wang, David R. Welland, Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu S. Srinivasan
  • Patent number: 6970717
    Abstract: A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: November 29, 2005
    Assignee: Silicon Laboratories Inc.
    Inventors: Richard T. Behrens, Tod Paulus, Mark S. Spurbeck, Vishnu S. Srinivasan, Donald A. Kerth, Jeffrey W. Scott, G. Tyson Tuttle, G. Diwakar Vishakhadatta
  • Patent number: 6819514
    Abstract: A sampled amplitude read channel for magnetic disk recording which asynchronously samples the analog read signal, adaptively equalizes the resulting discrete time sample values according to a target partial response, extracts synchronous sample values through interpolated timing recovery, and detects digital data from the synchronous sample values using a Viterbi sequence detector is disclosed. To minimize interference from the timing and gain control loops, the phase and magnitude response of the adaptive equalizer filter are constrained at a predetermined frequency using an optimal orthogonal projection operation as a modification to a least mean square (LMS) adaptation algorithm. Further, with interpolated timing recovery, the equalizer filter and its associated latency are removed from the timing recovery loop, thereby allowing a higher order discrete time filter and a lower order analog filter.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: November 16, 2004
    Assignee: Cirrus Logic, Inc.
    Inventors: Richard T. Behrens, Li Du, William G. Bliss, David E. Reed, Mark S. Spurbeck
  • Patent number: 6804497
    Abstract: Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: October 12, 2004
    Assignee: Silicon Laboratories, Inc.
    Inventors: Donald A. Kerth, Richard T. Behrens, Jeffrey W. Scott, G. Diwakar Vishakhadatta, G. Tyson Tuttle, Vishnu Shankar Srinivasan
  • Publication number: 20040166815
    Abstract: Components of a radio-frequency (RF) apparatus including transceiver circuitry and frequency modification circuitry of a crystal oscillator circuit that generates a reference signal with adjustable frequency may be partitioned in a variety of ways, for example, as one or more separate integrated circuits. The frequency modification circuitry may be implemented as part of a crystal oscillator circuit that includes digitally controlled crystal oscillator (“DCXO”) circuitry and a crystal. The frequency modification circuitry may include at least one variable capacitance device and may be employed to generate a reference signal with adjustable frequency. The adjustable reference signal may be provided to other components of the RF apparatus and/or the RF apparatus may be configured to provide the adjustable reference signal to baseband processor circuitry.
    Type: Application
    Filed: July 31, 2003
    Publication date: August 26, 2004
    Inventors: James Maligeorgos, Augusto M. Marques, Lysander Lim, G. Tyson Tuttle, Aslamali A. Rafi, Tod Paulus, Gregory T. Uehara, Jeffery W. Scott, Richard T. Behrens, Donald A. Kerth, G. Diwakar Vishakhadatta, Vishnu S. Srinivasan, Caiyi Wang