Patents by Inventor Robert L. Bristol

Robert L. Bristol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200066629
    Abstract: Advanced lithography techniques including sub-10 nm pitch patterning and structures resulting therefrom are described. Self-assembled devices and their methods of fabrication are described.
    Type: Application
    Filed: December 23, 2016
    Publication date: February 27, 2020
    Inventors: Richard E. SCHENKER, Robert L. BRISTOL, Kevin L. LIN, Florian GSTREIN, James M. BLACKWELL, Marie KRYSAK, Manish CHANDHOK, Paul A. NYHUS, Charles H. WALLACE, Curtis W. WARD, Swaminathan SIVAKUMAR, Elliot N. TAN
  • Patent number: 10553532
    Abstract: Embodiments of the invention include interconnect structures with overhead vias and through vias that are self-aligned with interconnect lines and methods of forming such structures. In an embodiment, an interconnect structure is formed in an interlayer dielectric (ILD). One or more first interconnect lines may be formed in the ILD. The interconnect structure may also include one or more second interconnect lines in the ILD that arranged in an alternating pattern with the first interconnect lines. Top surfaces of each of the first and second interconnect lines may be recessed below a top surface of the ILD. The interconnect structure may include a self-aligned overhead via formed over one or more of the first interconnect lines or over one or more of the second interconnect lines. In an embodiment, a top surface of the self-aligned overhead via is substantially coplanar with a top surface of the ILD.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 4, 2020
    Assignee: Intel Corporation
    Inventors: Richard E. Schenker, Manish Chandhok, Robert L. Bristol, Mauro J. Kobrinsky, Kevin Lin
  • Patent number: 10490416
    Abstract: Described herein are structures and methods for preparing photobuckets for lithography, e.g. photolithography or electron-beam lithography. One method includes arranging photobuckets on a material to be etched using lithography and providing a layer of a first material at least on inner side walls of the photobuckets, followed by filling the photobuckets with a second material. The second material is more lithosensitive than the first material and the first material could be not lithosensitive at all. Layering each photobucket from the inner side wall(s) of the photobucket towards the center of the photobucket with materials that are increasingly more lithosensitive results in an improved control of lithographic patterning by reducing or eliminating edge placement errors of accidentally exposing photobuckets that should not have been exposed.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 26, 2019
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, James M. Blackwell
  • Patent number: 10457548
    Abstract: A conductive layer is deposited into a trench in a sacrificial layer on a substrate. An etch stop layer is deposited over the conductive layer. The sacrificial layer is removed to form a gap. In one embodiment, a beam is over a substrate. An interconnect is on the beam. An etch stop layer is over the beam. A gap is between the beam and the etch stop layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: October 29, 2019
    Assignee: Intel Corporation
    Inventors: Kevin Lai Lin, Chytra Pawashe, Raseong Kim, Ian A. Young, Kanwal Jit Singh, Robert L. Bristol
  • Publication number: 20190318959
    Abstract: Approaches based on differential hardmasks for modulation of electrobucket sensitivity for semiconductor structure fabrication, and the resulting structures, are described. In an example, a method of fabricating an interconnect structure for an integrated circuit includes forming a hardmask layer above an inter-layer dielectric (ILD) layer formed above a substrate. A plurality of dielectric spacers is formed on the hardmask layer. The hardmask layer is patterned to form a plurality of first hardmask portions. A plurality of second hardmask portions is formed alternating with the first hardmask portions. A plurality of electrobuckets is formed on the alternating first and second hardmask portions and in openings between the plurality of dielectric spacers. Select ones of the plurality of electrobuckets are exposed to a lithographic exposure and removed to define a set of via locations.
    Type: Application
    Filed: December 23, 2016
    Publication date: October 17, 2019
    Inventors: Kevin L. LIN, Robert L. BRISTOL, James M. BLACKWELL, Rami HOURANI, Marie KRYSAK
  • Publication number: 20190318958
    Abstract: Approaches based on photobucket floor colors with selective grafting for semiconductor structure fabrication, and the resulting structures, are described. For example, a grating structure is formed above an ILD layer formed above a substrate, the grating structure including a plurality of dielectric spacers separated by alternating first trenches and second trenches, grafting a resist-inhibitor layer in the first trenches but not in the second trenches, forming photoresist in the first trenches and in the second trenches, exposing and removing the photoresist in select ones of the second trenches to a lithographic exposure to define a set of via locations, etching the set of via locations into the ILD layer, and forming a plurality of metal lines in the ILD layer, where select ones of the plurality of metal lines includes an underlying conductive via corresponding to the set of via locations.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 17, 2019
    Inventors: Robert L. BRISTOL, Kevin L. LIN, James M. BLACKWELL, Rami HOURANI, Eungnak HAN
  • Publication number: 20190311984
    Abstract: There is disclosed in an example an integrated circuit, including: a first layer having a dielectric, a first conductive interconnect and a second conductive interconnect; a second layer having a third conductive interconnect; a conductive via between the first layer and the second layer to electrically couple the second conductive interconnect to the third conductive interconnect; a dielectric plug disposed vertically between the first layer and second layer and disposed to prevent the via from electrically shorting to the first conductive interconnect; and a dielectric cap covering the dielectric plug.
    Type: Application
    Filed: December 29, 2016
    Publication date: October 10, 2019
    Applicant: Intel Corporation
    Inventors: Kevin L. Lin, Robert L. Bristol, Rami Hourani, James M. Blackwell
  • Publication number: 20190302615
    Abstract: A photosensitive composition including metal nanoparticles capped with an organic ligand, wherein the metal particles includes a metal that absorbs light in the extreme ultraviolet spectrum. A method including synthesizing metal particles including a diameter of 5 nanometers or less, wherein the metal particles includes a metal that absorbs light in the extreme ultraviolet spectrum; and capping the metal particles with an organic ligand. A method including depositing a photosensitive composition on a semiconductor substrate, wherein the photosensitive composition includes metal nanoparticles capped with an organic ligand and the nanoparticles include a metal that absorbs light in the extreme ultraviolet spectrum; exposing the photosensitive composition to light in an ultraviolet spectrum through a mask including a pattern; and transferring the mask pattern to the photosensitive composition.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 3, 2019
    Inventors: Marie KRYSAK, James M. BLACKWELL, Robert L. BRISTOL, Florian GSTREIN
  • Publication number: 20190259935
    Abstract: Magneto-electric spin orbital (MESO) structures having functional oxide vias, and method of fabricating magneto-electric spin orbital (MESO) structures having functional oxide vias, are described. In an example, a magneto-electric spin orbital (MESO) device includes a source region and a drain region in or above a substrate. A first via contact is on the source region. A second via contact is on the drain region, the second via contact laterally adjacent to the first via contact. A plurality of alternating ferromagnetic material lines and non-ferromagnetic conductive lines is above the first and second via contacts. A first of the ferromagnetic material lines is on the first via contact, and a second of the ferromagnetic material lines is on the second via contact. A spin orbit coupling (SOC) via is on the first of the ferromagnetic material lines. A functional oxide via is on the second of the ferromagnetic material lines.
    Type: Application
    Filed: December 23, 2016
    Publication date: August 22, 2019
    Inventors: Jasmeet S. CHAWLA, Sasikanth MANIPATRUNI, Robert L. BRISTOL, Chia-Ching LIN, Dmitri E. NIKONOV, Ian A. YOUNG
  • Publication number: 20190244806
    Abstract: Surface-aligned lithographic patterning approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, an integrated circuit structure includes a substrate. A plurality of alternating first and second conductive lines is along a first direction of a back end of line (BEOL) metallization layer in a first inter-layer dielectric (ILD) layer above the substrate. A conductive via is on and electrically coupled to one of the conductive lines of the plurality of alternating first and second conductive lines, the conductive via centered over the one of the conductive lines. A second ILD layer is above plurality of alternating first and second conductive lines and laterally adjacent to the conductive via. The second ILD layer has an uppermost surface substantially co-planar with the flat top surface of the conductive via.
    Type: Application
    Filed: December 2, 2016
    Publication date: August 8, 2019
    Inventors: Robert L. BRISTOL, Kevin L. LIN, James M. BLACKWELL
  • Publication number: 20190229188
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer; and a plurality of gates disposed above the quantum well stack, wherein individual ones of the plurality of gates have a footprint shape with two opposing linear faces and two opposing curved faces.
    Type: Application
    Filed: August 10, 2016
    Publication date: July 25, 2019
    Applicant: Intel Corporation
    Inventors: James S. Clarke, Robert L. Bristol, Ravi Pillarisetty, Jeanette M. Roberts, Hubert C. George, Nicole K. Thomas
  • Publication number: 20190229189
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack including a quantum well layer; a plurality of gates disposed above the quantum well stack, wherein at least two of the gates are spaced apart in a first dimension above the quantum well stack, at least two of the gates are spaced apart in a second dimension above the quantum well stack, and the first and second dimensions are perpendicular; and an insulating material disposed above the quantum well stack, wherein the insulating material extends between at least two of the gates spaced apart in the first dimension, and the insulating material extends between at least two of the gates spaced apart in the second dimension.
    Type: Application
    Filed: August 10, 2016
    Publication date: July 25, 2019
    Applicant: Intel Corporation
    Inventors: James S. Clarke, Robert L. Bristol, Ravi Pillarisetty, Jeanette M. Roberts, Hubert C. George, Nicole K. Thomas
  • Publication number: 20190206733
    Abstract: Subtractive plug and tab patterning with photobuckets for back end of line (BEOL) spacer-based interconnects is described. In an example, a back end of line (BEOL) metallization layer for a semiconductor structure includes an inter-layer dielectric (ILD) layer disposed above a substrate. A plurality of conductive lines is disposed in the ILD layer along a first direction. A conductive tab is disposed in the ILD layer, the conductive tab coupling two of the plurality of conductive lines along a second direction orthogonal to the first direction. A conductive via is coupled to one of the plurality of conductive lines, the conductive via having a via hardmask thereon. An uppermost surface of each of the ILD layer, the plurality of conductive lines, the conductive tab, and the via hardmask is planar with one another.
    Type: Application
    Filed: May 27, 2016
    Publication date: July 4, 2019
    Inventors: Kevin LIN, Robert L. BRISTOL, Richard E. SCHENKER
  • Publication number: 20190165270
    Abstract: Spacer-based patterning for tight-pitch and low-variability random access memory (RAM) bit cells, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate having a top layer. An array of non-volatile random access memory (RAM) bit cells is disposed on the top layer of the substrate. The array of non-volatile RAM bit cells includes columns of non-volatile RAM bit cells along a first direction and rows of non-volatile RAM bit cells along a second direction orthogonal to the first direction. A plurality of recesses is in the top layer of the substrate, along the first direction between columns of the array of non-volatile RAM bit cells.
    Type: Application
    Filed: September 30, 2016
    Publication date: May 30, 2019
    Inventors: Kevin L. LIN, Sarah E. ATANASOV, Kevin P. O'BRIEN, Robert L. BRISTOL
  • Publication number: 20190164815
    Abstract: Damascene plug and tab patterning with photobuckets for back end of line (BEOL) spacer-based interconnects is described. In an example, a back end of line (BEOL) metallization layer for a semiconductor structure includes an inter-layer dielectric (ILD) layer disposed above a substrate. A plurality of conductive lines is disposed in the ILD layer along a first direction. A conductive tab is disposed in the ILD layer. The conductive tab couples two of the plurality of conductive lines along a second direction orthogonal to the first direction.
    Type: Application
    Filed: May 27, 2016
    Publication date: May 30, 2019
    Inventors: Kevin LIN, Robert L. BRISTOL, Richard E. SCHENKER
  • Publication number: 20190146335
    Abstract: Lined photoresist structures to facilitate fabricating back end of line (BEOL) interconnects are described. In an embodiment, a hard mask has recesses formed therein, wherein liner structures are variously disposed each on a sidewall of a respective recess. Photobuckets comprising photoresist material are also variously disposed in the recesses. The liner structures variously serve as marginal buffers to mitigate possible effects of misalignment in the exposure of photoresist material to photons or an electron beam. In another embodiment, a recess has disposed therein a liner structure and a photobucket that are both formed by self-assembly of a photoresist-based block-copolymer.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 16, 2019
    Inventors: James M. BLACKWELL, Robert L. BRISTOL, Marie KRYSAK, Florian GSTREIN, Eungnak HAN, Kevin L. LIN, Rami HOURANI, Shane M. HARLSON
  • Patent number: 10269623
    Abstract: Image tone-reversal with a dielectric using bottom-up cross-linking for back end of line (BEOL) interconnects is described. In an example, a semiconductor structure including a metallization layer includes a plurality of trenches in an interlayer dielectric (ILD) layer above a substrate. A pre-catalyst layer is on sidewalls of one or more, but not all, of the plurality of trenches. Cross-linked portions of a dielectric material are proximate the pre-catalyst layer, in the one or more of the plurality of trenches. Conductive structures are in remaining ones of the trenches.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: April 23, 2019
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, James M. Blackwell, Rami Hourani
  • Patent number: 10269622
    Abstract: Embodiments of the invention include microelectronic devices and methods of forming such devices. In an embodiment, a microelectronic device, includes one or more pre-patterned features formed into a interconnect layer, with a conformal barrier layer formed over the first wall, and the second wall of one or more of the pre-patterned features. A photoresist layer may formed over the barrier layer and within one or more of the pre-patterned features and a conductive via may be formed in at least one of the pre-patterned features.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: April 23, 2019
    Assignee: Intel Corporation
    Inventors: Rami Hourani, Michael J. Leeson, Todd R. Younkin, Eungnak Han, Robert L. Bristol
  • Publication number: 20190043731
    Abstract: Two-stage bake photoresists with releasable quenchers for fabricating back end of line (BEOL) interconnects are described. In an example, a photolyzable composition includes an acid-deprotectable photoresist material having substantial transparency at a wavelength, a photo-acid-generating (PAG) component having substantial transparency at the wavelength, and a base-generating component having substantial absorptivity at the wavelength.
    Type: Application
    Filed: April 8, 2016
    Publication date: February 7, 2019
    Inventors: Robert L. BRISTOL, Marie KRYSAK, James M. BLACKWELL, Florian GSTREIN, Kent N. FRASURE
  • Patent number: 10109583
    Abstract: Embodiments of the invention include an interconnect structure and methods of forming such structures. In an embodiment, the interconnect structure may include an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD. Certain embodiments include one or more first interconnect lines in the ILD and a first dielectric cap positioned above each of the first interconnect lines. For example a surface of the first dielectric cap may contact a top surface of the first hardmask layer. Embodiments may also include one or more second interconnect lines in the ILD arranged in an alternating pattern with the first inter-connect lines. In an embodiment, a second dielectric cap is formed over a top surface of each of the second interconnect lines. For example, a surface of the second dielectric cap contacts a top surface of the first hardmask layer.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: October 23, 2018
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Manish Chandhok, Jasmeet S. Chawla, Florian Gstrein, Eungnak Han, Rami Hourani, Kevin Lin, Richard E. Schenker, Todd R. Younkin