Patents by Inventor Robert Rash

Robert Rash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200017989
    Abstract: Electroplating results can be improved by dynamically controlling the pressure in different parts of an electroplating apparatus. For example, a number of plating problems can be avoided by ensuring that the pressure in an anode chamber always remains slightly above the pressure in an ionically resistive element manifold, both during electroplating and during non-electroplating operations. This pressure differential prevents the membrane from stretching downward into the anode chamber.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 16, 2020
    Inventors: Stephen J. Banik, II, Bryan L. Buckalew, Frederick Dean Wilmot, Robert Rash
  • Publication number: 20190368630
    Abstract: A valve assembly used with a process chamber for depositing a film on a wafer. A valve body surrounds a bore and includes an inlet, a first outlet and a second outlet, at least one of them exiting into the process chamber. A piston includes a first section having a first flow path, and a second section having a second flow path. A linear motion actuator is adapted to couple with the piston and controls linear movement of the piston through the bore between a first position and a second position. In the first position, the first section of the piston is aligned with the inlet such that fluid flows to the first outlet via the first flow path. In the second position, the second section of the piston is aligned with the inlet such that fluid flows to the second outlet via the second flow path.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: James Isaac Fortner, Robert Rash, Aaron Berke, Jingbin Feng
  • Publication number: 20190264347
    Abstract: An apparatus for electroplating a semiconductor wafer includes an insert member configured to circumscribe a processing region. The insert member has a top surface. A portion of the top surface of the insert member has an upward slope that slopes upward from a peripheral area of the top surface of the insert member toward the processing region. The apparatus also includes a seal member having an annular-disk shape. The seal member is positioned on the top surface of the insert member. The seal member is flexible such that an outer radial portion of the seal member conforms to the upward slope of the top surface of the insert member and such that an inner radial portion of the seal member projects inward toward the processing region.
    Type: Application
    Filed: July 24, 2018
    Publication date: August 29, 2019
    Inventors: Aaron Berke, Stephen J. Banik, Bryan Buckalew, Robert Rash
  • Patent number: 10301738
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 28, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Publication number: 20190085479
    Abstract: Various embodiments herein relate to methods and apparatus for electroplating material onto a semiconductor substrate. The apparatus includes an ionically resistive element that separates the plating chamber into a cross flow manifold (above the ionically resistive element) and an ionically resistive element manifold (below the ionically resistive element). Electrolyte is delivered to the cross flow manifold, where it shears over the surface of the substrate, and to the ionically resistive element manifold, where it passes through through-holes in the ionically resistive element to impinge upon the substrate as it enters the cross flow manifold. In certain embodiments, the flow of electrolyte into the cross flow manifold (e.g., through a side inlet) and the flow of electrolyte into the ionically resistive element manifold are actively controlled, e.g., using a three-way valve. In these or other cases, the ionically resistive element may include electrolyte jets.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Stephen J. Banik, II, Aaron Berke, Bryan L. Buckalew, Robert Rash
  • Publication number: 20190055665
    Abstract: Various embodiments described herein relate to methods and apparatus for electroplating material onto a semiconductor substrate. In some cases, one or more membrane may be provided in contact with an ionically resistive element to minimize the degree to which electrolyte passes backwards from a cross flow manifold, through the ionically resistive element, and into an ionically resistive element manifold during electroplating. The membrane may be designed to route electrolyte in a desired manner in some embodiments. In these or other cases, one or more baffles may be provided in the ionically resistive element manifold to reduce the degree to which electrolyte is able to bypass the cross flow manifold by flowing back through the ionically resistive element and across the electroplating cell within the ionically resistive element manifold. These techniques can be used to improve the uniformity of electroplating results.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 21, 2019
    Inventors: Stephen J. Banik, II, Bryan L. Buckalew, Aaron Berke, James Isaac Fortner, Justin Oberst, Steven T. Mayer, Robert Rash
  • Patent number: 10208395
    Abstract: The embodiments disclosed herein relate to methods and apparatus for promoting bubble-free circulation of processing fluids in a recirculation system. Certain disclosed techniques involve passive, mechanical valve designs that promote variable resistance to flow in a drain. Other techniques involve automated flow control schemes that utilize feedback from flow meters, level sensors, etc. to achieve a balanced and bubble-free flow. The disclosed embodiments greatly reduce the incorporation of gas into a processing fluid, in particular as the processing fluid returns from a processing cell to a reservoir.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: February 19, 2019
    Assignee: Lam Research Corporation
    Inventors: Richard Abraham, Robert Rash, David W. Porter, Steven T. Mayer, John Ostrowski
  • Publication number: 20190040544
    Abstract: Disclosed are electroplating cups for holding, sealing, and providing electrical power to wafers during electroplating, where the electroplating cup can include a cup bottom, an elastomeric lipseal, and an electrical contact element. The cup bottom can include a radially inwardly protruding surface with a plurality of through-holes. The elastomeric lipseal can directly adhere to the radially inwardly protruding surface of the cup bottom, fill the plurality of through-holes, and encircle an inner edge of the cup bottom. In some implementations, this can mitigate the effects of wafer sticking. In some implementations, the cup bottom may be treated to promote adhesion between the elastomeric lipseal and the radially inwardly protruding surface of the cup bottom.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 7, 2019
    Inventors: Aaron Berke, Robert Rash, Steven T. Mayer, Santosh Kumar, Lee Peng Chua
  • Patent number: 10190230
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: January 29, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Richard Abraham, Steven T. Mayer, Bryan L. Buckalew, Robert Rash
  • Publication number: 20180363162
    Abstract: Disclosed herein are lipseal assemblies for use in an electroplating clamshell for engaging and supplying electrical current to a semiconductor substrate during electroplating, which include an elastomeric lipseal for engaging the semiconductor substrate during electroplating, and wherein upon engagement the elastomeric lipseal forms multiple radially-separated sealing contact surfaces with the substrate which substantially exclude plating solution from a peripheral region of the substrate. Said lipseal assemblies may also include one or more electrical contact elements for supplying electrical current to the semiconductor substrate during electroplating.
    Type: Application
    Filed: August 24, 2018
    Publication date: December 20, 2018
    Inventors: John Floyd Ostrowski, Robert Rash
  • Publication number: 20180312991
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 1, 2018
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke
  • Publication number: 20180291517
    Abstract: Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. The shield is positioned in close proximity of the substrate (e.g., within a distance that is equal to 0.1 of the substrate's radius). The shield in some embodiments may be an ionically resistive ionically permeable element having an azimuthally asymmetric distribution of channels.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 11, 2018
    Inventors: Steven T. Mayer, David W. Porter, Bryan L. Buckalew, Robert Rash
  • Patent number: 10092933
    Abstract: Disclosed herein are methods of cleaning a lipseal and/or cup bottom of an electroplating device by removing metal deposits accumulated in prior electroplating operations. The methods may include orienting a nozzle such that it is pointed substantially at the inner circular edge of the lipseal and/or cup bottom, and dispensing a stream of cleaning solution from the nozzle such that the stream contacts the inner circular edge of the lipseal and/or cup bottom while they are being rotated, removing metal deposits. In some embodiments, the stream has a velocity component against the rotational direction of the lipseal and/or cup bottom. In some embodiments, the deposits may include a tin/silver alloy. Also disclosed herein are cleaning apparatuses for mounting in electroplating devices and for removing electroplated metal deposits from their lipseals and/or cup bottoms. In some embodiments, the cleaning apparatuses may include a jet nozzle.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: October 9, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Santosh Kumar, Bryan L. Buckalew, Steven T. Mayer, Thomas Ponnuswamy, Chad Michael Hosack, Robert Rash, Lee Peng Chua, David Porter
  • Patent number: 10094034
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Steven T. Mayer, Robert Rash, James Isaac Fortner, Lee Peng Chua
  • Publication number: 20180286660
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved plating uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; and an ionically resistive ionically permeable element comprising a substantially planar substrate-facing surface and an opposing surface, wherein the element allows for flow of ionic current towards the substrate during electroplating, and wherein the element comprises a region having varied local resistivity. In one example the resistivity of the element is varied by varying the thickness of the element. In some embodiments the thickness of the element is gradually reduced in a radial direction from the edge of the element to the center of the element. The provided apparatus and methods are particularly useful for electroplating metal in WLP recessed features.
    Type: Application
    Filed: June 1, 2018
    Publication date: October 4, 2018
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Lee Peng Chua, Aaron Berke, Robert Rash, Steven T. Mayer
  • Patent number: 10087545
    Abstract: Disclosed herein are cleaning discs for cleaning one or more elements of a semiconductor processing apparatus. In some embodiments, the disc may have a substantially circular upper surface, a substantially circular lower surface, a substantially circular edge joining the upper and lower surfaces, and a plurality of pores opening at the edge and having an interior extending into the interior of the disc. In some embodiments, the pores are dimensioned such that a cleaning agent may be retained in the interior of the pores by an adhesive force between the cleaning agent and the interior surface of the pores. Also disclosed herein are cleaning methods involving loading a cleaning agent into a plurality of pores of a cleaning disc, positioning the cleaning disc within a semiconductor processing apparatus, and releasing cleaning agent from the plurality of pores such that elements of the apparatus are contacted by the released cleaning agent.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: October 2, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Thomas A. Ponnuswamy, Lee Peng Chua, Robert Rash
  • Publication number: 20180258546
    Abstract: Methods and apparatus for electroplating substrates are described herein. In some cases, an ionically resistive element is positioned near the substrate, creating a cross flow manifold between the ionically resistive element and the substrate. During plating, fluid may enter the cross flow manifold upward through the channels in the ionically resistive element, and (optionally) laterally through a cross flow side inlet. The flow paths combine in the cross flow manifold and exit at the cross flow outlet, which may be positioned opposite the cross flow inlet. In some embodiments, the ionically resistive element may include two or more flow regions, where the flow through each flow region is independently controllable. In these or other embodiments, an electrolyte jet may be included to flow additional electrolyte toward the substrate at a particular radial location or locations during plating. In some embodiments, the ionically resistive element may be omitted.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 13, 2018
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Lee Peng Chua, Robert Rash, James Isaac Fortner, Aaron Berke
  • Publication number: 20180251907
    Abstract: A lipseal is designed for use in a lipseal assembly of an electroplating apparatus wherein a clamshell engages and supplies electrical current to a semiconductor substrate during electroplating. The lipseal includes an elastomeric body having an outer portion configured to engage a cup of the lipseal assembly and an inner portion configured to engage a peripheral region of the semiconductor substrate. The inner portion includes a protrusion having a width in a radial direction sufficient to provide a contact area with the semiconductor substrate which inhibits diffusion of acid in an electroplating solution used during the electroplating. The protrusion is located at an inner periphery of the lipseal.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 6, 2018
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Kari Thorkelsson, Aaron Berke, Santosh Kumar, Robert Rash, Lee Peng Chua, Bryan Buckalew
  • Patent number: 10066311
    Abstract: Disclosed herein are lipseal assemblies for use in an electroplating clamshell for engaging and supplying electrical current to a semiconductor substrate during electroplating, which include an elastomeric lipseal for engaging the semiconductor substrate during electroplating, and wherein upon engagement the elastomeric lipseal forms multiple radially-separated sealing contact surfaces with the substrate which substantially exclude plating solution from a peripheral region of the substrate. Said lipseal assemblies may also include one or more electrical contact elements for supplying electrical current to the semiconductor substrate during electroplating.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: September 4, 2018
    Assignee: Lam Research Corporation
    Inventors: John Floyd Ostrowski, Robert Rash
  • Patent number: 10053793
    Abstract: Disclosed are electroplating cups for holding, sealing, and providing electrical power to wafers during electroplating, where the electroplating cup can include a cup bottom, an elastomeric lipseal, and an electrical contact element. The cup bottom can include a radially inwardly protruding surface with a plurality of through-holes. The elastomeric lipseal can directly adhere to the radially inwardly protruding surface of the cup bottom, fill the plurality of through-holes, and encircle an inner edge of the cup bottom. In some implementations, this can mitigate the effects of wafer sticking. In some implementations, the cup bottom may be treated to promote adhesion between the elastomeric lipseal and the radially inwardly protruding surface of the cup bottom.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: August 21, 2018
    Assignee: Lam Research Corporation
    Inventors: Aaron Berke, Robert Rash, Steven T. Mayer, Santosh Kumar, Lee Peng Chua