Patents by Inventor Robert Rash

Robert Rash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10017869
    Abstract: Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. For example, a semiconductor wafer substrate can be rotated during electroplating slower or faster, when the selected portion of the substrate passes through the shielded area.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: July 10, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter, Bryan L. Buckalew, Robert Rash
  • Patent number: 10014170
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved plating uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; and an ionically resistive ionically permeable element comprising a substantially planar substrate-facing surface and an opposing surface, wherein the element allows for flow of ionic current towards the substrate during electroplating, and wherein the element comprises a region having varied local resistivity. In one example the resistivity of the element is varied by varying the thickness of the element. In some embodiments the thickness of the element is gradually reduced in a radial direction from the edge of the element to the center of the element. The provided apparatus and methods are particularly useful for electroplating metal in WLP recessed features.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: July 3, 2018
    Assignee: Lam Research Corporation
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Lee Peng Chua, Aaron Berke, Robert Rash, Steven T. Mayer
  • Patent number: 9988733
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 5, 2018
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke
  • Publication number: 20180105949
    Abstract: Methods and apparatus for electroplating material onto a substrate are provided. In many cases the material is metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a porous ionically resistive plate positioned near the substrate, the plate having a plurality of interconnecting 3D channels and creating a cross flow manifold defined on the bottom by the plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through channels in the plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Application
    Filed: October 31, 2017
    Publication date: April 19, 2018
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Publication number: 20180023209
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Application
    Filed: October 3, 2017
    Publication date: January 25, 2018
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Patent number: 9834852
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 5, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Patent number: 9828688
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: November 28, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Patent number: 9752248
    Abstract: Disclosed herein are methods of electroplating which may include placing a substrate, an anode, and an electroplating solution in an electroplating cell such that the substrate and the anode are located on opposite sides of a fluidically-permeable plate, setting the configuration of one or more seals which, when in their sealing configuration, substantially seal pores of the fluidically-permeable plate, and applying an electrical potential between the anode and the first substrate sufficient to cause electroplating on the first substrate such that the rate of electroplating in an edge region of the first substrate is affected by the configuration of the one or more seals. Also disclosed herein are apparatuses for electroplating which may include one or more seals for substantially sealing a subset of the pores in a fluidically-permeable plate whose sealing configuration affects a rate of electroplating in an edge region of the substrate.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 5, 2017
    Assignee: Lam Research Corporation
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Aaron Berke, James Isaac Fortner, Robert Rash
  • Patent number: 9721800
    Abstract: Disclosed are pre-wetting apparatus designs and methods. These apparatus designs and methods are used to pre-wet a wafer prior to plating a metal on the surface of the wafer. Disclosed compositions of the pre-wetting fluid prevent corrosion of a seed layer on the wafer and also improve the filling rates of features on the wafer.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: August 1, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter, Mark J. Willey, Robert Rash
  • Publication number: 20170175286
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Richard Abraham, Steven T. Mayer, Bryan L. Buckalew, Robert Rash
  • Publication number: 20170167045
    Abstract: The embodiments disclosed herein relate to methods and apparatus for promoting bubble-free circulation of processing fluids in a recirculation system. Certain disclosed techniques involve passive, mechanical valve designs that promote variable resistance to flow in a drain. Other techniques involve automated flow control schemes that utilize feedback from flow meters, level sensors, etc. to achieve a balanced and bubble-free flow. The disclosed embodiments greatly reduce the incorporation of gas into a processing fluid, in particular as the processing fluid returns from a processing cell to a reservoir.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Richard Abraham, Robert Rash, David W. Porter, Steven T. Mayer, John Ostrowski
  • Patent number: 9624592
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 18, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Richard Abraham, Steven T. Mayer, Bryan L. Buckalew, Robert Rash
  • Patent number: 9617652
    Abstract: The embodiments disclosed herein relate to methods and apparatus for promoting bubble-free circulation of processing fluids in a recirculation system. Certain disclosed techniques involve passive, mechanical valve designs that promote variable resistance to flow in a drain. Other techniques involve automated flow control schemes that utilize feedback from flow meters, level sensors, etc. to achieve a balanced and bubble-free flow. The disclosed embodiments greatly reduce the incorporation of gas into a processing fluid, in particular as the processing fluid returns from a processing cell to a reservoir.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 11, 2017
    Assignee: Lam Research Corporation
    Inventors: Richard Abraham, Robert Rash, David W. Porter, Steven T. Mayer, John Ostrowski
  • Publication number: 20170073832
    Abstract: Disclosed are electroplating cups for engaging wafers during electroplating, where the electroplating cup can include a ring-shaped cup bottom, an elastomeric seal, and an electrical contact element. The cup bottom may be repeatedly exposed to electroplating solution. The cup bottom can include a non-conductive material upon which a solid lubricant coating can be applied. The solid lubricant coating can be cured at a relatively low temperature, such as less than the melting temperature of the non-conductive material, and can be durable and hydrophobic.
    Type: Application
    Filed: January 22, 2016
    Publication date: March 16, 2017
    Inventors: Aaron Berke, Santosh Kumar, Lee Peng Chua, Robert Rash
  • Publication number: 20170058417
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Application
    Filed: October 27, 2015
    Publication date: March 2, 2017
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Steven T. Mayer, Robert Rash, James Isaac Fortner, Lee Peng Chua
  • Patent number: 9567685
    Abstract: An apparatus for electroplating metal on a substrate while controlling plating uniformity includes in one aspect: a plating chamber having anolyte and catholyte compartments separated by a membrane; a primary anode positioned in the anolyte compartment; an ionically resistive ionically permeable element positioned between the membrane and a substrate in the catholyte compartment; and a secondary electrode configured to donate and/or divert plating current to and/or from the substrate, wherein the secondary electrode is positioned such that the donated and/or diverted plating current does not cross the membrane separating the anolyte and catholyte compartments, but passes through the ionically resistive ionically permeable element. In some embodiments the secondary electrode is an azimuthally symmetrical anode (e.g., a ring positioned in a separate compartment around the periphery of the plating chamber) that can be dynamically controlled during electroplating.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: February 14, 2017
    Assignee: Lam Research Corporation
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Steven T. Mayer, Lee Peng Chua, Aaron Berke, James Isaac Fortner, Robert Rash
  • Publication number: 20170029973
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Application
    Filed: October 12, 2016
    Publication date: February 2, 2017
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Publication number: 20170009369
    Abstract: Disclosed are electroplating cups for holding, sealing, and providing electrical power to wafers during electroplating, where the electroplating cup can include a cup bottom, an elastomeric lipseal, and an electrical contact element. The cup bottom can include a radially inwardly protruding surface with a plurality of through-holes. The elastomeric lipseal can directly adhere to the radially inwardly protruding surface of the cup bottom, fill the plurality of through-holes, and encircle an inner edge of the cup bottom. In some implementations, this can mitigate the effects of wafer sticking. In some implementations, the cup bottom may be treated to promote adhesion between the elastomeric lipseal and the radially inwardly protruding surface of the cup bottom.
    Type: Application
    Filed: November 9, 2015
    Publication date: January 12, 2017
    Inventors: Aaron Berke, Robert Rash, Steven T. Mayer, Santosh Kumar, Lee Peng Chua
  • Patent number: 9523155
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: December 20, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Publication number: 20160362809
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke