Patents by Inventor Robert T. Caveney

Robert T. Caveney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180233986
    Abstract: A transport apparatus including a housing, a drive mounted to the housing, and at least one transport arm connected to the drive where the drive includes at least one rotor having at least one salient pole of magnetic permeable material and disposed in an isolated environment, at least one stator having at least one salient pole with corresponding coil units and disposed outside the isolated environment, where the at least one salient pole of the at least one stator and the at least one salient pole of the rotor form a closed magnetic flux circuit between the at least one rotor and the at least one stator, and at least one seal configured to isolate the isolated environment where the at least one seal is integral to the at least one stator.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Jairo T. MOURA, Ulysses GILCHRIST, Robert T. CAVENEY
  • Publication number: 20180211858
    Abstract: A transport apparatus including a drive section connected to a frame and including a multi-drive shaft spindle, with at least one coaxial shaft spindle, more than one different interchangeable motor module arranged in a stack, each having a motor operably coupled thereto and defining a corresponding independent drive axis, and a can seal disposed between the stator and rotor of each motor module and hermetically sealing the stator and rotor from each other, at least one of the motor modules is selectable for placement in the stack from other different interchangeable motor modules, each having a different predetermined characteristic, independent of placement in the stack, that defines a different predetermined drive characteristic of the corresponding drive axis, independent of shaft spindle location, so that selection of the at least one motor module determines the different predetermined drive characteristic of the corresponding axis different from another of the independent drive axis.
    Type: Application
    Filed: July 11, 2016
    Publication date: July 26, 2018
    Inventor: Robert T. CAVENEY
  • Publication number: 20180141762
    Abstract: A substrate processing system including at least two vertically stacked transport chambers, each of the vertically stacked transport chambers including a plurality of openings arranged to form vertical stacks of openings configured for coupling to vertically stacked process modules, at least one of the vertically stacked transport chambers includes at least one transport chamber module arranged for coupling to another transport chamber module to form a linear transport chamber and another of the at least two stacked transport chambers including at least one transport chamber module arranged for coupling to another transport chamber module to form another linear transport chamber, and a transport robot disposed in each of the transport chamber modules, where a joint of the transport robot is locationally fixed along a linear path formed by the respective linear transport chamber.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 24, 2018
    Inventor: Robert T. CAVENEY
  • Publication number: 20180138066
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Robert T. CAVENEY, Jayaraman KRISHNASAMY, Ulysses GILCHRIST, Mitchell DREW, Jairo T. MOURA
  • Patent number: 9948155
    Abstract: A transport apparatus including a housing, a drive mounted to the housing, and at least one transport arm connected to the drive where the drive includes at least one rotor having at least one salient pole of magnetic permeable material and disposed in an isolated environment, at least one stator having at least one salient pole with corresponding coil units and disposed outside the isolated environment, where the at least one salient pole of the at least one stator and the at least one salient pole of the rotor form a closed magnetic flux circuit between the at least one rotor and the at least one stator, and at least one seal configured to isolate the isolated environment where the at least one seal is integral to the at least one stator.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: April 17, 2018
    Assignee: Brooks Automation, Inc.
    Inventors: Jairo T. Moura, Ulysses Gilchrist, Robert T. Caveney
  • Patent number: 9862554
    Abstract: A substrate processing system including at least two vertically stacked transport chambers, each of the vertically stacked transport chambers including a plurality of openings arranged to form vertical stacks of openings configured for coupling to vertically stacked process modules, at least one of the vertically stacked transport chambers includes at least one transport chamber module arranged for coupling to another transport chamber module to form a linear transport chamber and another of the at least two stacked transport chambers including at least one transport chamber module arranged for coupling to another transport chamber module to form another linear transport chamber, and a transport robot disposed in each of the transport chamber modules, where a joint of the transport robot is locationally fixed along a linear path formed by the respective linear transport chamber.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: January 9, 2018
    Assignee: Brooks Automation, Inc.
    Inventor: Robert T. Caveney
  • Publication number: 20180005866
    Abstract: A substrate transport apparatus including a frame, an upper arm rotatably mounted to the frame about a shoulder axis, a forearm rotatably mounted to the upper arm about an elbow axis where the forearm includes stacked forearm sections dependent from the upper arm through a common joint, and independent stacked end effectors rotatably mounted to the forearm, the forearm being common to the independent stacked end effectors, wherein at least end effector is mounted to the stacked forearm sections at a wrist axis, where the forearm is configured such that spacing between the independent stacked end effectors mounted to the stacked forearm sections is decoupled from a height build up between end effectors accommodating pass through instrumentation.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: Robert T. CAVENEY, Ulysses GILCHRIST
  • Patent number: 9852935
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: December 26, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Jayaraman Krishnasamy, Ulysses Gilchrist, Mitchell Drew, Jairo T. Moura
  • Publication number: 20170361459
    Abstract: A substrate transport apparatus including a frame, at least one arm link rotatably connected to the frame and a shaftless drive section. The shaftless drive section including stacked drive motors for rotating the at least one arm link relative to the frame through a shaftless interface, each of the stacked drive motors including a stator having stator coils disposed on a fixed post fixed relative to the frame and a rotor substantially peripherally surrounding the stator such that the rotor is connected to a respective one of the at least one arm link for rotating the one of the at least one arm link relative to the frame causing an extension or retraction of the one of the at least one arm link, where the stacked drive motors are disposed in the at least one arm link so that part of each stator is within a common arm link.
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventor: Robert T. CAVENEY
  • Publication number: 20170282357
    Abstract: A substrate processing apparatus including a frame, a first arm coupled to the frame at a shoulder axis having a first upper arm, a first forearm and at least one substrate holder serially and rotatably coupled to each other, a second arm coupled to the frame at the shoulder axis where shoulder axes of rotation of the arms are substantially coincident, the second arm having a second upper arm, a second forearm and at least one substrate holder serially and rotatably coupled to each other, and a drive section connected to the frame and coupled to the arms, the drive section being configured to independently extend and rotate each arm where an axis of extension of the first arm is angled relative to an axis of extension of the second arm substantially at each angular position of at least one of the first arm or the second arm.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 5, 2017
    Inventors: Robert T. CAVENEY, Alexander G. KRUPYSHEV, Martin R. ELLIOT, Christopher HOFMEISTER
  • Patent number: 9761478
    Abstract: A substrate transport apparatus including a frame, an upper arm rotatably mounted to the frame about a shoulder axis, a forearm rotatably mounted to the upper arm about an elbow axis where the forearm includes stacked forearm sections dependent from the upper arm through a common joint, and independent stacked end effectors rotatably mounted to the forearm, the forearm being common to the independent stacked end effectors, wherein at least one end effector is mounted to the stacked forearm sections at a wrist axis, where the forearm is configured such that spacing between the independent stacked end effectors mounted to the stacked forearm sections is decoupled from a height build up between end effectors accommodating pass through instrumentation.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 12, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Ulysses Gilchrist
  • Patent number: 9751209
    Abstract: A substrate transport apparatus including a frame, at least one arm link rotatably connected to the frame and a shaftless drive section. The shaftless drive section including stacked drive motors for rotating the at least one arm link relative to the frame through a shaftless interface, each of the stacked drive motors including a stator having stator coils disposed on a fixed post fixed relative to the frame and a rotor substantially peripherally surrounding the stator such that the rotor is connected to a respective one of the at least one arm link for rotating the one of the at least one arm link relative to the frame causing an extension or retraction of the one of the at least one arm link, where the stacked drive motors are disposed in the at least one arm link so that part of each stator is within a common arm link.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: September 5, 2017
    Assignee: Brooks Automation, Inc.
    Inventor: Robert T. Caveney
  • Patent number: 9656386
    Abstract: A robotic transport apparatus including a drive system including at least one harmonic motor assembly, at least one drive shaft coupled to the at least one harmonic motor assembly, at least one robotic arm mounted to the at least one drive shaft, where the robotic arm is located inside a sealed environment, and at least one atmospheric isolation seal seated on an output surface of the drive system and forming an atmospheric barrier disposed so that the at least one drive shaft extends through the atmospheric barrier into the sealed environment and the at least one harmonic motor assembly is located outside the sealed environment, wherein the robotic transport apparatus is a high capacity payload transport apparatus.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: May 23, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Ulysses Gilchrist
  • Patent number: 9623555
    Abstract: A substrate processing apparatus including a frame, a first arm coupled to the frame at a shoulder axis having a first upper arm, a first forearm and at least one substrate holder serially and rotatably coupled to each other, a second arm coupled to the frame at the shoulder axis where shoulder axes of rotation of the arms are substantially coincident, the second arm having a second upper arm, a second forearm and at least one substrate holder serially and rotatably coupled to each other, and a drive section connected to the frame and coupled to the arms, the drive section being configured to independently extend and rotate each arm where an axis of extension of the first arm is angled relative to an axis of extension of the second arm substantially at each angular position of at least one of the first arm or the second arm.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 18, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Alexander G. Krupyshev, Robert T. Caveney, Martin R. Elliott, Christopher Hofmeister
  • Patent number: 9570330
    Abstract: A substrate processing apparatus is presented having a transport chamber defining substantially linear substrate transport paths, a linear array of substrate holding modules, each communicably connected to the chamber. The substrate transport has at least one transporter capable of holding and moving the substrate on more than one substantially linear substrate transport paths. The transport chamber having different transport tubes at least one of which is sealable at both ends of the transport tube and configured to hold an isolated atmosphere different from that of the transport tubes, each of the different transport tubes having one of the substrate transport paths located therein different from another of the transport paths located in another of the transport tubes, and being communicably connected to each other, where at least one of the transport tubes is configured to provide uninterrupted transit of the substrate transport through the transport tubes.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: February 14, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Christopher Hofmeister, Robert T. Caveney
  • Publication number: 20170040203
    Abstract: A substrate transport apparatus including a frame, an upper arm rotatably mounted to the frame about a shoulder axis, a forearm rotatably mounted to the upper arm about an elbow axis where the forearm includes stacked forearm sections dependent from the upper arm through a common joint, and independent stacked end effectors rotatably mounted to the forearm, the forearm being common to the independent stacked end effectors, wherein at least one end effector is mounted to the stacked forearm sections at a wrist axis, where the forearm is configured such that spacing between the independent stacked end effectors mounted to the stacked forearm sections is decoupled from a height build up between end effectors accommodating pass through instrumentation.
    Type: Application
    Filed: January 28, 2015
    Publication date: February 9, 2017
    Inventors: Robert T. CAVENEY, Ulysses GILCHRIST
  • Publication number: 20160325440
    Abstract: A transport apparatus including a frame, a drive section connected to the frame, the drive section having at least one drive axis, at least one arm having an end effector configured for holding a substrate, the at least one arm being connected to the drive section by a transmission link and having at least one degree of freedom axis effecting extension and retraction of the end effector with respect to the at least one arm, and a bearing connected to the frame and the end effector, the bearing defining a guideway that defines the at least one degree of freedom axis.
    Type: Application
    Filed: January 16, 2015
    Publication date: November 10, 2016
    Inventor: Robert T. CAVENEY
  • Publication number: 20160329234
    Abstract: A transfer apparatus for transporting substrates in a transfer chamber having a first and second ends and two sides extending between the ends. The transfer apparatus includes a drive section, at least one base arm fixed at one end with respect to the transfer chamber and including at least one arm link rotatably coupled to the drive section and at least one transfer arm rotatably coupled to a common end of the base arm, the at least one transfer arm has two end effectors. The drive section has motors with three independent axes of rotation defining three degrees of freedom. One degree of freedom moves the at least one base arm horizontally for transporting the at least one transfer arm and two degrees of freedom drives the at least one transfer arm to extend and retract the at least one transfer arm and swap the two end effectors.
    Type: Application
    Filed: July 20, 2016
    Publication date: November 10, 2016
    Inventors: Alexander Krupyshev, Robert T. Caveney, Daniel Babbs, Ulysses Gilchrist
  • Publication number: 20160293467
    Abstract: In accordance with one or more aspects of the disclosed embodiment a semiconductor processing apparatus is provided. The semiconductor processing apparatus includes a frame forming a sealable chamber having a longitudinal axis and lateral sides astride the longitudinal axis, the sealable chamber being configured to hold a sealed environment therein, at least one transport module mounted to the sealable chamber and having a telescoping carriage being configured so that the telescoping carriage is linearly movable relative to another portion of the transport module where the telescoping carriage and the other portion define a telescoping motion along the longitudinal axis, and at least one transfer robot mounted to the carriage, each of the at least one transfer robot having at least one transfer arm configured for holding a substrate thereon.
    Type: Application
    Filed: October 16, 2014
    Publication date: October 6, 2016
    Inventors: Robert T. CAVENEY, Ulysses GILCHRIST
  • Publication number: 20160289000
    Abstract: A configurable cryogenic storage device has a freezer and a rack carrier positioned inside of the freezer. The freezer includes a bearing and a drive shaft though the freezer, the drive shaft being coupled to the rack carrier inside the freezer and adapted to be coupled to a motor assembly. The rack carrier rests on the bearing in a manual rotation configuration and hangs from the drive shaft when the motor is connected. Coupling the drive shaft to the motor assembly lifts the rack carrier and decouples the bearing and enables automated rotation of the rack carrier by the motor. The rack carrier includes rack-mounting features holding a plurality of sample storage racks. The sample storage racks hang from the rack carrier and the rack-mounting features precisely position the end of each sample storage rack.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventors: Robert T. Caveney, Frank Hunt, Lingchen Sun, Julian D. Warhurst, Bruce S. Zandi, Jeffrey S. Brooks