Patents by Inventor Roland Rupp

Roland Rupp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10541301
    Abstract: A method of producing a semiconductor device includes providing a semiconductor body including a semiconductor body material having a dopant diffusion coefficient that is smaller than the corresponding dopant diffusion coefficient of silicon. At least one first semiconductor region doped with dopants of a first conductivity type is produced in the semiconductor body, including by applying a first implantation of first implantation ions. At least one second semiconductor region adjacent to the at least one first semiconductor region and doped with dopants of a second conductivity type complementary to the first conductivity type is produced in the semiconductor body, including by applying a second implantation of second implantation ions.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Wolfgang Jantscher, Roland Rupp, Werner Schustereder, Hans Weber
  • Patent number: 10541325
    Abstract: In termination regions of a silicon carbide substrate field zones are formed by ion implantation. By laterally modulating a distribution of dopants entering the silicon carbide substrate by the ion implantation, a horizontal net dopant distribution in the field zones is set to fall from a maximum net dopant concentration Nmax to Nmax/e within at least 200 nm, with e representing Euler's number. The field zones form first pn junctions with a drift layer.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: January 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Elpelt, Roland Rupp, Reinhold Schoerner, Larissa Wehrhahn-Kilian, Bernd Zippelius
  • Publication number: 20200013859
    Abstract: According to an embodiment of a method described herein, a silicon carbide substrate is provided that includes a plurality of device regions. A front side metallization may be provided at a front side of the silicon carbide substrate. The method may further comprise providing an auxiliary structure at a backside of the silicon carbide substrate. The auxiliary structure includes a plurality of laterally separated metal portions. Each metal portion is in contact with one device region of the plurality of device regions.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 9, 2020
    Inventors: Carsten SCHAEFFER, Alexander Breymesser, Bernhand Goller, Ronny Kern, Matteo Piccin, Roland Rupp, Francisco Javier Santos Rodriguez
  • Publication number: 20200013723
    Abstract: A silicon carbide device includes a silicon carbide substrate, a contact layer including nickel, silicon and aluminum, a barrier layer structure including titanium and tungsten, and a metallization layer including copper. The contact layer is located on the silicon carbide substrate. The contact layer is located between the silicon carbide substrate and at least a part of the barrier layer structure. The barrier layer structure is located between the silicon carbide substrate and the metallization layer.
    Type: Application
    Filed: June 26, 2019
    Publication date: January 9, 2020
    Inventors: Edward Fuergut, Ravi Keshav Joshi, Ralf Siemieniec, Thomas Basler, Martin Gruber, Jochen Hilsenbeck, Dethard Peters, Roland Rupp, Wolfgang Scholz
  • Patent number: 10529612
    Abstract: In various embodiments, a method for processing a semiconductor wafer is provided. The semiconductor wafer includes a first main processing side and a second main processing side, which is arranged opposite the first main processing side, and at least one circuit region having at least one electronic circuit on the first main processing side. The method includes forming a stiffening structure, which at least partly surrounds the at least one circuit region and which stiffens the semiconductor wafer, wherein the stiffening structure has a cutout at least above part of the at least one circuit region, and thinning the semiconductor wafer, including the stiffening structure, from the second main processing side.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: January 7, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Francisco Javier Santos Rodriguez, Roland Rupp
  • Publication number: 20190362972
    Abstract: A method for processing a silicon carbide wafer includes implanting ions into the silicon carbide wafer to form an absorption layer in the silicon carbide wafer. The absorption coefficient of the absorption layer is at least 100 times the absorption coefficient of silicon carbide material of the silicon carbide wafer outside the absorption layer, for light of a target wavelength. The silicon carbide wafer is split along the absorption layer at least by irradiating the silicon carbide wafer with light of the target wavelength to obtain a silicon carbide device wafer and a remaining silicon carbide wafer.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 28, 2019
    Inventors: Hans-Joachim Schulze, Alexander Breymesser, Guenter Denifl, Mihai Draghici, Bernhard Goller, Tobias Franz Wolfgang Hoechbauer, Wolfgang Lehnert, Roland Rupp, Werner Schustereder
  • Publication number: 20190363057
    Abstract: A method for processing a semiconductor wafer is proposed. The method may include reducing a thickness of the semiconductor wafer. A carrier structure is placed on a first side of the semiconductor wafer, e.g. before or after reducing the thickness of the semiconductor wafer. The method further includes providing a support structure on a second side of the semiconductor wafer opposite to the first side, e.g. after reducing the thickness of the semiconductor wafer. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 28, 2019
    Inventors: Francisco Javier Santos Rodriguez, Alexander Breymesser, Erich Griebl, Michael Knabl, Matthias Kuenle, Andreas Moser, Roland Rupp, Hans-Joachim Schulze, Sokratis Sgouridis, Stephan Voss
  • Publication number: 20190348328
    Abstract: A method for processing a wide band gap semiconductor wafer is proposed. The method includes depositing a non-monocrystalline support layer at a back side of a wide band gap semiconductor wafer, depositing an epitaxial layer at a front side of the wide band gap semiconductor wafer, and splitting the wide band gap semiconductor wafer along a splitting region to obtain a device wafer including at least a part of the epitaxial layer, and a remaining wafer including the non-monocrystalline support layer.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 14, 2019
    Inventors: Francisco Javier Santos Rodriguez, Guenter Denifl, Tobias Franz Wolfgang Hoechbauer, Martin Huber, Wolfgang Lehnert, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 10475909
    Abstract: An electric assembly includes a bipolar switching device and a transistor circuit. The transistor circuit is electrically connected in parallel with the bipolar switching device and includes a normally-on wide bandgap transistor.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 12, 2019
    Assignee: Infineon Technologies, AG
    Inventors: Thomas Basler, Roman Baburske, Daniel Domes, Johannes Georg Laven, Roland Rupp
  • Publication number: 20190337069
    Abstract: A method of yielding a thinner product wafer from a thicker base SiC wafer cut from a SiC ingot includes: supporting the base SiC wafer with a support substrate: and while the base SiC wafer is supported by the support substrate, cutting through the base SiC wafer in a direction parallel to a first main surface of the base SiC wafer using a wire as part of a wire electrical discharge machining (WEDM) process, to separate the product wafer from the base SiC wafer, the product wafer being attached to the support substrate when cut from the base SiC wafer.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 7, 2019
    Inventors: Nirdesh Ojha, Francisco Javier Santos Rodriguez, Roland Rupp, Markus Heinrici, Karin Delalut, Claudia Friza
  • Publication number: 20190328675
    Abstract: A pharmaceutical formulation comprising an erosion matrix comprising one or more fumaric acid esters as well as one or more rate-controlling agents, wherein erosion of said erosion matrix permits controlled release of said fumaric acid ester(s).
    Type: Application
    Filed: November 28, 2018
    Publication date: October 31, 2019
    Inventors: Henrik Nilsson, Roland Rupp
  • Patent number: 10460895
    Abstract: A safety switching device for fail-safely disconnecting an electrical load has an input part for receiving a safety-relevant input signal, a logic part for processing the at least one safety-relevant input signal, and an output part. The output part has a relay coil and four relay contacts. The first and second relay contacts are arranged electrically in series with one another. The third and fourth relay contacts are also arranged electrically in series with one another. The first and the third relay contacts are mechanically coupled to each other and form a first group of positively driven relay contacts. The second and the fourth relay contacts are mechanically coupled to each other and form a second group of positively driven relay contacts. The logic part redundantly controls the first and the second groups of positively driven relay contacts to selectively allow, or to interrupt in a fail-safe manner, a current flow to the electrical load, depending on the safety-relevant input signal.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 29, 2019
    Assignee: PILZ GMBH & CO. KG
    Inventors: Jürgen Pullmann, Roland Rupp, Christoph Zinser, Antonio Spataro, Marco Giger, Hans Schwenkel
  • Patent number: 10431504
    Abstract: A semiconductor disk of a first crystalline material, which has a first lattice system, is bonded on a process surface of a base substrate, wherein a bonding layer is formed between the semiconductor disk and the base substrate. A second semiconductor layer of a second crystalline material with a second, different lattice system is formed by epitaxy on a first semiconductor layer formed from the semiconductor disk.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 1, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Wolfgang Lehnert, Rudolf Berger, Albert Birner, Helmut Brech, Oliver Häberlen, Guenther Ruhl, Roland Rupp
  • Publication number: 20190296141
    Abstract: A semiconductor component includes a SiC semiconductor body. A drift zone of a first conductivity type and a semiconductor region are formed in the SiC semiconductor body. Barrier structures extending from the semiconductor region into the drift zone differ from the gate structures.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 26, 2019
    Inventors: Roland Rupp, Larissa Wehrhahn-Kilian, Bernd Zippelius
  • Publication number: 20190296110
    Abstract: A semiconductor device includes trench gate structures that extend from a first surface into a silicon carbide portion. A shielding region between a drift zone and the trench gate structures along a vertical direction orthogonal to the first surface forms an auxiliary pn junction with the drift zone. Channel regions and the trench gate structures are successively arranged along a first horizontal direction. The channel regions are arranged between a source region and a current spread region along a second horizontal direction orthogonal to the first horizontal direction. Portions of mesa sections between neighboring trench gate structures fully deplete at a gate voltage within an absolute maximum rating of the semiconductor device.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Andreas Meiser, Anton Mauder, Roland Rupp, Oana Julia Spulber
  • Publication number: 20190296125
    Abstract: A method includes providing a first layer of epitaxial silicon carbide supported by a silicon carbide substrate, providing a second layer of epitaxial silicon carbide on the first layer, forming a plurality of semiconductor devices in the second layer, and separating the substrate from the second layer at the first layer. The first layer includes a plurality of voids.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 26, 2019
    Inventors: Hans-Joachim Schulze, Roland Rupp, Francisco Javier Santos Rodriguez
  • Patent number: 10410911
    Abstract: A method of fabricating a semiconductor device includes forming a buried insulation region within a substrate by processing the substrate using etching and deposition processes. A semiconductor layer is formed over the buried insulation region at a first side of the substrate. Device regions are formed in the semiconductor layer. The substrate is thinned from a second side of the substrate to expose the buried insulation region. The buried insulation region is selectively removed to expose a bottom surface of the substrate. A conductive region is formed under the bottom surface of the substrate.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 10, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Carsten Schaeffer, Andreas Moser, Matthias Kuenle, Matteo Dainese, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 10411097
    Abstract: Representative implementations of devices and techniques provide an optimized layer for a semiconductor component. In an example, a doped portion of a wafer, forming a substrate layer may be transferred from the wafer to an acceptor, or handle wafer. A component layer may be applied to the substrate layer. The acceptor wafer is detached from the substrate layer. In some examples, further processing may be executed with regard to the substrate and/or component layers.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 10, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Jens Peter Konrath, Roland Rupp, Christian Hecht
  • Patent number: 10403468
    Abstract: A method of producing an implantation ion energy filter, suitable for processing a power semiconductor device. In one example, the method includes creating a preform having a first structure; providing an energy filter body material; and structuring the energy filter body material by using the preform, thereby establishing an energy filter body having a second structure.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Andre Brockmeier
  • Patent number: 10396170
    Abstract: A semiconductor device includes a transistor doping region of a vertical transistor structure arranged in a semiconductor substrate. Additionally, the semiconductor device includes a graphene layer portion located adjacent to at least a portion of the transistor doping region at a surface of the semiconductor substrate. The semiconductor device further includes a transistor wiring structure located adjacent to the graphene layer portion.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 27, 2019
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Guenther Ruhl, Roland Rupp