Patents by Inventor Ruiping Wang

Ruiping Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6403491
    Abstract: A method for etching a dielectric in a thermally controlled plasma etch chamber with an expanded processing window. The method is adapted to incorporate benefits of a the thermal control and high evacuation capability of the chamber. Etchent gases include hydrocarbons, oxygen and inert gas. Explanation is provided for enablling the use of hexafluoro-1,3-butadiene in a capacitively coupled etch plasma. The method is very useful for creating via, self aligned contacts, dual damascene, and other dielectric etch.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 11, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jingbao Liu, Judy Wang, Takehiko Komatsu, Bryan Y Pu, Kenny L Doan, Claes Bjorkman, Melody Chang, Yunsang Kim, Hongching Shan, Ruiping Wang
  • Patent number: 6387287
    Abstract: An oxide etching process, particularly useful for selectively etching oxide over a feature having a non-oxide composition, such as silicon nitride and especially when that feature has a corner that is prone to faceting during the oxide etch. The invention uses one of three hydrogen-free fluorocarbons having a low F/C ratio, specifically hexafluorobutadiene (C4F6), hexafluorocyclobutene (C4F6), and hexafluorobenzene (C6F6). At least hexafluorobutadiene has a boiling point below 10° C. and is commercially available. The fluorocarbon together with a substantial amount of a noble gas such as argon is excited into a high-density plasma in a reactor which inductively couples plasma source power into the chamber and RF biases the pedestal electrode supporting the wafer. Preferably, one of two two-step etch process is used. In the first, the source and bias power are reduced towards the end of the etch.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: May 14, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Hoiman Hung, Joseph P Caulfield, Hongqing Shan, Ruiping Wang, Gerald Zheyao Yin
  • Patent number: 6361705
    Abstract: A plasma etch process, particularly applicable to an self-aligned contact etch in a high-density plasma for selectively etching oxide over nitride, although selectivity to silicon is also achieved. In the process, a fluoropropane or a fluoropropylene is a principal etching gas in the presence of a substantial amount of an inactive gas such as argon. Good nitride selectivity has been achieved with hexafluoropropylene (C3F6), octafluoropropane (C3F8), heptafluoropropane (C3HF7), hexafluoropropane (C3H2F6). The process may use one or more of the these gases in proportions to optimize selectivity and a wide process window. Difluoromethane (CH2F2) or other fluorocarbons may be combined with the above gases, particularly with C3F6 for optimum selectivity over other materials without the occurrence of etch stop in narrow contact holes and with a wide process window.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: March 26, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Ruiping Wang, Gerald Z. Yin, Hao A. Lu, Robert W. Wu, Jian Ding
  • Publication number: 20020019139
    Abstract: A substrate having a patterned mask and exposed openings is provided in a process chamber having process electrodes. In a plasma ignition stage, a process gas is provided in the process chamber and is energized by maintaining the process electrodes at a plasma ignition bias power level. In an etch-passivating stage, an etch-passivating material is formed on at least portions of the substrate by maintaining the process electrodes at an etch-passivating bias power level. In an etching stage, the exposed openings on the substrate are etched by maintaining the process electrodes at an etching bias power level.
    Type: Application
    Filed: August 23, 2001
    Publication date: February 14, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Luke Zhang, Ruiping Wang, Ida Ariani Adisaputro, Kwang-Soo Kim
  • Patent number: 6291357
    Abstract: A substrate 20 is placed in a process zone 115 of a process chamber 110, process gas is introduced into the process zone 115, and an energized gas is formed in the process zone 115. First process conditions are set to form etch-passivating deposits onto a surface 22 of the substrate 20. Second process conditions are set to etch the surface 22 of the substrate 20. The etch-passivating deposits formed before the etching process improve etching uniformity and reduce etch-rate microloading.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: September 18, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Luke Zhang, Ruiping Wang, Ida Ariani Adisaputro, Kwang-Soo Kim
  • Patent number: 6183655
    Abstract: A plasma etch process, particularly applicable to a self-aligned contact etch or other advanced structures requiring high-selectivity to nitride or other non-oxide materials and producing no etch stop. The process is preferably performed in a high-density plasma reactor for etching holes with either high or low aspect rations. In this process, hexafluoropropylene (C3F6) is the principal etching gas and another hydrofluorocarbon such as CH2F2 or C3H2F6 is added at least in part for its polymer-forming ability, which increases selectivity of etching oxide to nitride. The process gas also includes a substantial amount of an inactive gas such as argon. The process gas mixture can be balanced between the active etching gas and the polymer former in proportions to optimize selectivity over other materials without the occurrence of etch stop in narrow contact holes and with a wide process window.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: February 6, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ruiping Wang, Gerald Z. Yin, Robert W. Wu, Jian Ding
  • Patent number: 6174451
    Abstract: An oxide etching process, particular useful for selectively etching oxide over a feature having a non-oxide composition, such as silicon nitride and especially when that feature has a corner that is prone to faceting during the oxide etch. The invention uses one of three unsaturated 3- and 4-carbon fluorocarbons, specifically hexafluorobutadiene (C4F6), pentafluoropropylene (C3HF5), and trifluoropropyne (C3HF3), all of which have boiling points below 10° C. and are commercially available. The unsaturated hydrofluorocarbon together with argon is excited into a high-density plasma in a reactor which inductively couples plasma source power into the chamber and RF biases the pedestal electrode supporting the wafer. Preferably, a two-step etch is used process is used in which the above etching gas is used in the main step to provide a good vertical profile and a more strongly polymerizing fluorocarbon such as difluoromethane (CH2F2) is added in the over etch to protect the nitride corner.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: January 16, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Raymond Hung, Joseph P. Caulfield, Hongching Shan, Ruiping Wang, Gerald Z. Yin
  • Patent number: 6074959
    Abstract: A plasma etch process, particularly applicable to a self-aligned contact etch or other advanced structures requiring high-selectivity to nitride or other non-oxide materials and no etch stop. The process is preferably performed in a high-density plasma reactor for etching holes with either high or low aspect rations. In this process, hexafluoropropane (C.sub.3 H.sub.2 F.sub.6) is the principal etching gas in the presence of a substantial amount of an inactive gas such as argon. The process can also be used with the closely related gases heptafluoropropane (C.sub.3 HF.sub.7) and pentafluoropropane (C.sub.3 H.sub.3 F.sub.5). The process may use one or more of the these gases in proportions to optimize selectivity over other materials without the occurrence of etch stop in narrow contact holes and with a wide process window. Difluoromethane (CH.sub.2 F.sub.2) or other fluorocarbons may be combined with the above gases for optimum selectivity for a design of a specific contact feature.
    Type: Grant
    Filed: November 5, 1997
    Date of Patent: June 13, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Ruiping Wang, Gerald Z. Yin, Robert W. Wu, Jian Ding
  • Patent number: 5837058
    Abstract: A susceptor with improved resistance to thermal cycling and chemical attack between processing and cleaning cycles. The susceptor comprises a top surface is surrounded by a lip, the lip having a beveled inner side, a top side, an outer side, a first rounded edge between the top side and the outer side, a second rounded edge between the top side and the inner side, and a third rounded edge between the inner side and the top surface. The susceptor comprises a body of graphite covered by a coating of aluminum nitride.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: November 17, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Steven Aihua Chen, Ming Xi, Ruiping Wang