Patents by Inventor Sameer P. Pendharkar

Sameer P. Pendharkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9673273
    Abstract: A semiconductor device has an n-type buried layer formed by implanting antimony and/or arsenic into the p-type first epitaxial layer at a high dose and low energy, and implanting phosphorus at a low dose and high energy. A thermal drive process diffuses and activates both the heavy dopants and the phosphorus. The antimony and arsenic do not diffuse significantly, maintaining a narrow profile for a main layer of the buried layer. The phosphorus diffuses to provide a lightly-doped layer several microns thick below the main layer. An epitaxial p-type layer is grown over the buried layer.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: June 6, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, Binghua Hu, Henry Litzmann Edwards
  • Patent number: 9653577
    Abstract: A multi-finger lateral high voltage transistors (MFLHVT) includes a substrate doped a first dopant type, a well doped a second dopant type, and a buried drift layer (BDL) doped first type having a diluted BDL portion (DBDL) including dilution stripes. A semiconductor surface doped the second type is on the BDL. Dielectric isolation regions have gaps defining a first active area in a first gap region (first MOAT) and a second active area in a second gap region (second MOAT). A drain includes drain fingers in the second MOAT interdigitated with source fingers in the first MOAT each doped second type. The DBDL is within a fingertip drift region associated drain fingertips and/or source fingertips between the first and second MOAT. A gate stack is on the semiconductor surface between source and drain. The dilution stripes have stripe widths that increase monotonically with a drift length at their respective positions.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 16, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Scott G. Balster
  • Publication number: 20170125528
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Application
    Filed: January 11, 2017
    Publication date: May 4, 2017
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9633849
    Abstract: A process for forming at least two different doping levels at the surface of a wafer using one photo resist pattern and implantation process step. A resist layer is developed (but not baked) to form a first resist geometry and a plurality of sublithographic resist geometries. The resist layer is baked causing the sublithographic resist geometries to reflow into a continuous second resist geometry having a thickness less that the first resist geometry. A high energy implant implants dopants through the second resist geometry but not through the first resist geometry. A low energy implant is blocked by both the first and second resist geometries.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, Binghua Hu
  • Patent number: 9608088
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, John Lin
  • Publication number: 20170084738
    Abstract: RESURF-based dual-gate p-n bimodal conduction laterally diffused metal oxide semiconductors (LDMOS). In an illustrative embodiment, a p-type source is electrically coupled to an n-type drain. A p-type drain is electrically coupled to an n-type source. An n-type layer serves as an n-type conduction channel between the n-type drain and the n-type source. A p-type top layer is disposed at the surface of the substrate of said semiconductor device and is disposed above and adjacent to the n-type layer. The p-type top layer serves as a p-type conduction channel between the p-type source and the p-type drain. An n-gate controls current flow in the n-type conduction channel, and a p-gate controls current flow in the p-type conduction channel.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Henry Litzmann Edwards
  • Patent number: 9583579
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9543299
    Abstract: RESURF-based dual-gate p-n bimodal conduction laterally diffused metal oxide semiconductors (LDMOS). In an illustrative embodiment, a p-type source is electrically coupled to an n-type drain. A p-type drain is electrically coupled to an n-type source. An n-type layer serves as an n-type conduction channel between the n-type drain and the n-type source. A p-type top layer is disposed at the surface of the substrate of said semiconductor device and is disposed above and adjacent to the n-type layer. The p-type top layer serves as a p-type conduction channel between the p-type source and the p-type drain. An n-gate controls current flow in the n-type conduction channel, and a p-gate controls current flow in the p-type conduction channel.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: January 10, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Henry Litzmann Edwards
  • Publication number: 20160343852
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Sameer P. PENDHARKAR, John LIN
  • Publication number: 20160336427
    Abstract: A multi-finger lateral high voltage transistors (MFLHVT) includes a substrate doped a first dopant type, a well doped a second dopant type, and a buried drift layer (BDL) doped first type having a diluted BDL portion (DBDL) including dilution stripes. A semiconductor surface doped the second type is on the BDL. Dielectric isolation regions have gaps defining a first active area in a first gap region (first MOAT) and a second active area in a second gap region (second MOAT). A drain includes drain fingers in the second MOAT interdigitated with source fingers in the first MOAT each doped second type. The DBDL is within a fingertip drift region associated drain fingertips and/or source fingertips between the first and second MOAT. A gate stack is on the semiconductor surface between source and drain. The dilution stripes have stripe widths that increase monotonically with a drift length at their respective positions.
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Inventors: Yongxi ZHANG, Sameer P. PENDHARKAR, Scott G. BALSTER
  • Publication number: 20160315141
    Abstract: A semiconductor device has an n-type buried layer formed by implanting antimony and/or arsenic into the p-type first epitaxial layer at a high dose and low energy, and implanting phosphorus at a low dose and high energy. A thermal drive process diffuses and activates both the heavy dopants and the phosphorus. The antimony and arsenic do not diffuse significantly, maintaining a narrow profile for a main layer of the buried layer. The phosphorus diffuses to provide a lightly-doped layer several microns thick below the main layer. An epitaxial p-type layer is grown over the buried layer.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 27, 2016
    Inventors: Sameer P. Pendharkar, Binghua Hu, Henry Litzmann Edwards
  • Publication number: 20160308007
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Publication number: 20160254346
    Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
    Type: Application
    Filed: February 28, 2015
    Publication date: September 1, 2016
    Applicant: Texas Instruments Incorporated
    Inventors: Yongxi Zhang, Philip L. Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P. Pendharkar
  • Patent number: 9431480
    Abstract: A multi-finger lateral high voltage transistors (MFLHVT) includes a substrate doped a first dopant type, a well doped a second dopant type, and a buried drift layer (BDL) doped first type having a diluted BDL portion (DBDL) including dilution stripes. A semiconductor surface doped the second type is on the BDL. Dielectric isolation regions have gaps defining a first active area in a first gap region (first MOAT) and a second active area in a second gap region (second MOAT). A drain includes drain fingers in the second MOAT interdigitated with source fingers in the first MOAT each doped second type. The DBDL is within a fingertip drift region associated drain fingertips and/or source fingertips between the first and second MOAT. A gate stack is on the semiconductor surface between source and drain. The dilution stripes have stripe widths that increase monotonically with a drift length at their respective positions.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: August 30, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Scott G. Balster
  • Patent number: 9431286
    Abstract: A semiconductor device with a buried layer has a deep trench structure abutting the buried layer and a self-aligned sinker along sidewalls of the deep trench structure. The semiconductor device may be formed by forming a portion of a deep trench down to the buried layer, and implanting dopants into a substrate of the semiconductor device along sidewalls of the deep trench, and subsequently forming a remainder of the deep trench extending below the buried layer. Alternatively, the semiconductor device may be formed by forming the deep trench to extend below the buried layer, and subsequently implanting dopants into the substrate of the semiconductor device along sidewalls of the deep trench.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: August 30, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P Pendharkar, Binghua Hu, Abbas Ali, Henry Litzmann Edwards, John P. Erdeljac, Britton Robbins, Jarvis Benjamin Jacobs
  • Publication number: 20160225672
    Abstract: A process for forming at least two different doping levels at the surface of a wafer using one photo resist pattern and implantation process step. A resist layer is developed (but not baked) to form a first resist geometry and a plurality of sublithographic resist geometries. The resist layer is baked causing the sublithographic resist geometries to reflow into a continuous second resist geometry having a thickness less that the first resist geometry. A high energy implant implants dopants through the second resist geometry but not through the first resist geometry. A low energy implant is blocked by both the first and second resist geometries.
    Type: Application
    Filed: April 8, 2016
    Publication date: August 4, 2016
    Inventors: Sameer P. PENDHARKAR, Binghua HU
  • Patent number: 9401410
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9385187
    Abstract: A semiconductor device has an n-type buried layer formed by implanting antimony and/or arsenic into the p-type first epitaxial layer at a high dose and low energy, and implanting phosphorus at a low dose and high energy. A thermal drive process diffuses and activates both the heavy dopants and the phosphorus. The antimony and arsenic do not diffuse significantly, maintaining a narrow profile for a main layer of the buried layer. The phosphorus diffuses to provide a lightly-doped layer several microns thick below the main layer. An epitaxial p-type layer is grown over the buried layer.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P Pendharkar, Binghua Hu, Henry Litzmann Edwards
  • Patent number: 9362398
    Abstract: An integrated circuit containing an MOS transistor with a drain drift region adjacent to the channel region, a field oxide element in the drain region, a first gate section over the channel region and a second gate section over the field oxide element, with a gap between the gate sections so that at least half of the drift region is not covered by gate. A process of forming an integrated circuit containing an MOS transistor with a drain drift region adjacent to the channel region, a field oxide element in the drain region, a first gate section over the channel region and a second gate section over the field oxide element, with a gap between the gate sections so that at least half of the drift region is not covered by gate, so that the source/drain implant is blocked from the drift region below the gap.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 7, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sameer P. Pendharkar
  • Publication number: 20160149011
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs