Patents by Inventor Sameer P. Pendharkar

Sameer P. Pendharkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080085569
    Abstract: Embodiments provide a method and device for electrically monitoring trench depths in semiconductor devices. To electrically measure a trench depth, a pinch resistor can be formed in a deep well region on a semiconductor substrate. A trench can then be formed in the pinch resistor. The trench depth can be determined by an electrical test of the pinch resistor. The disclosed method and device can provide statistical data analysis across a wafer and can be implemented in production scribe lanes as a process monitor. The disclosed method can also be useful for determining device performance of LDMOS transistors. The on-state resistance (Rdson) of the LDMOS transistors can be correlated to the electrical measurement of the trench depth.
    Type: Application
    Filed: September 12, 2006
    Publication date: April 10, 2008
    Inventors: Qingfeng Wang, Sameer P. Pendharkar, Binghua Hu
  • Patent number: 7208386
    Abstract: A drain-extended metal-oxide-semiconductor transistor (40) with improved robustness in breakdown characteristics is disclosed. Field oxide isolation structures (29c) are disposed between the source region (30) and drain contact regions (32a, 32b, 32c) to break the channel region of the transistor into parallel sections. The gate electrode (35) extends over the multiple channel regions, and the underlying well (26) and thus the drift region (DFT) of the transistor extends along the full channel width. Channel stop doped regions (33) underlie the field oxide isolation structures (29c), and provide conductive paths for carriers during breakdown. Parasitic bipolar conduction, and damage due to that conduction, is therefore avoided.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: April 24, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer P. Pendharkar
  • Patent number: 7187034
    Abstract: Segmented power transistors and fabrication methods are disclosed in which transistor segments are spaced from one another to facilitate thermal diffusion, and in which other electrical devices can be formed in the spaces between transistor segments.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: March 6, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Philip L. Hower, John Lin, Sameer P. Pendharkar, Steven L. Merchant
  • Patent number: 6960807
    Abstract: A drain-extended metal-oxide-semiconductor transistor (40) with improved robustness in breakdown characteristics is disclosed. Field oxide isolation structures (29c) are disposed between the source region (30) and drain contact regions (32a, 32b, 32c) to break the channel region of the transistor into parallel sections. The gate electrode (35) extends over the multiple channel regions, and the underlying well (26) and thus the drift region (DFT) of the transistor extends along the full channel width. Channel stop doped regions (33) underlie the field oxide isolation structures (29c), and provide conductive paths for carriers during breakdown. Parasitic bipolar conduction, and damage due to that conduction, is therefore avoided.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: November 1, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer P. Pendharkar
  • Patent number: 6919603
    Abstract: An electrostatic discharge (ESD) protection structure for protecting against ESD events between signal terminals is disclosed. ESD protection is provided in a first polarity, by a bipolar transistor (4C) formed in an n-well (64; 164), having a collector contact (72; 172) to one signal terminal (PIN1) and its emitter region (68; 168) and base (66; 166) connected to a second signal terminal (PIN2). For reverse polarity ESD protection, a diode (25) is formed in the same n-well (64; 164) by a p+ region (78; 178) connected to the second signal terminal (PIN2), serving as the anode. The cathode can correspond to the n-well (64; 164) itself, as contacted by the collector contact (72; 172). By using the same n-well (64; 164) for both devices, the integrated circuit chip area required to implement this pin-to-pin protection is much reduced.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: July 19, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan Brodsky, Robert Steinhoff, Sameer P. Pendharkar
  • Patent number: 6908859
    Abstract: A transistor is formed in a semiconductor substrate. A deep n-well region is used in conjunction with a shallow n-well region. A lightly doped drain extension region is disposed between a drain region and a gate conductor. The use of the regions and against the backdrop of region provides for a very high breakdown voltage as compared to a relatively low channel resistance for the device.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 21, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Taylor R. Efland, William Nehrer
  • Patent number: 6884686
    Abstract: A high voltage semiconductor device includes a drain region disposed within a semiconductor substrate. The semiconductor device further includes a field oxide layer disposed outwardly from the drain region of the semiconductor substrate. The semiconductor device also includes a floating ring structure disposed inwardly from at least a portion of the field oxide layer. In one particular embodiment, a device parameter degradation associated with the semiconductor device comprises one (1) percent or less after approximately five hundred (500) seconds of accelerated lifetime operation.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: April 26, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer P. Pendharkar
  • Publication number: 20040256669
    Abstract: Segmented power transistors and fabrication methods are disclosed in which transistor segments are spaced from one another to facilitate thermal diffusion, and in which other electrical devices can be formed in the spaces between transistor segments.
    Type: Application
    Filed: July 9, 2004
    Publication date: December 23, 2004
    Inventors: Philip L. Hower, John Lin, Sameer P. Pendharkar, Steven L. Merchant
  • Publication number: 20040222485
    Abstract: A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post.
    Type: Application
    Filed: June 4, 2004
    Publication date: November 11, 2004
    Inventors: Sheldon D. Haynie, Steven L. Merchant, Sameer P. Pendharkar, Vladimir Bolkhovsky
  • Patent number: 6815276
    Abstract: Segmented power transistors and fabrication methods are disclosed in which transistor segments are spaced from one another to facilitate thermal diffusion, and in which other electrical devices can be formed in the spaces between transistor segments.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: November 9, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Philip L. Hower, John Lin, Sameer P. Pendharkar, Steven L. Merchant
  • Publication number: 20040217425
    Abstract: An electrostatic discharge (ESD) protection structure for protecting against ESD events between signal terminals is disclosed. ESD protection is provided in a first polarity, by a bipolar transistor (4C) formed in an n-well (64; 164), having a collector contact (72; 172) to one signal terminal (PIN1) and its emitter region (68; 168) and base (66; 166) connected to a second signal terminal (PIN2). For reverse polarity ESD protection, a diode (25) is formed in the same n-well (64; 164) by a p+ region (78; 178) connected to the second signal terminal (PIN2), serving as the anode. The cathode can correspond to the n-well (64; 164) itself, as contacted by the collector contact (72; 172). By using the same n-well (64; 164) for both devices, the integrated circuit chip area required to implement this pin-to-pin protection is much reduced.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 4, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Jonathan Brodsky, Robert Steinhoff, Sameer P. Pendharkar
  • Patent number: 6800917
    Abstract: A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: October 5, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Sheldon D. Haynie, Steven L. Merchant, Sameer P. Pendharkar, Vladimir Bolkhovsky
  • Patent number: 6797547
    Abstract: A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 28, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Sheldon D. Haynie, Steven L. Merchant, Sameer P. Pendharkar, Vladimir Bolkhovsky
  • Publication number: 20040129976
    Abstract: A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post.
    Type: Application
    Filed: October 3, 2003
    Publication date: July 8, 2004
    Inventors: Sheldon D. Haynie, Steven L. Merchant, Sameer P. Pendharkar, Vladimir Bolkhovsky
  • Publication number: 20040113223
    Abstract: A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 17, 2004
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sheldon D. Haynie, Steven L. Merchant, Sameer P. Pendharkar, Vladimir Bolkhovsky
  • Publication number: 20040079975
    Abstract: A high voltage semiconductor device includes a drain region disposed within a semiconductor substrate. The semiconductor device further includes a field oxide layer disposed outwardly from the drain region of the semiconductor substrate. The semiconductor device also includes a floating ring structure disposed inwardly from at least a portion of the field oxide layer. In one particular embodiment, a device parameter degradation associated with the semiconductor device comprises one (1) percent or less after approximately five hundred (500) seconds of accelerated lifetime operation.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 29, 2004
    Inventor: Sameer P. Pendharkar
  • Publication number: 20040067617
    Abstract: Segmented power transistors and fabrication methods are disclosed in which transistor segments are spaced from one another to facilitate thermal diffusion, and in which other electrical devices can be formed in the spaces between transistor segments.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 8, 2004
    Inventors: Philip L. Hower, John Lin, Sameer P. Pendharkar, Steven L. Merchant
  • Patent number: 6670685
    Abstract: A high voltage semiconductor device includes a drain region disposed within a semiconductor substrate. The semiconductor device further includes a field oxide layer disposed outwardly from the drain region of the semiconductor substrate. The semiconductor device also includes a floating ring structure disposed inwardly from at least a portion of the field oxide layer. In one particular embodiment, a device parameter degradation associated with the semiconductor device comprises one (1) percent or less after approximately five hundred (500) seconds of accelerated lifetime operation.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: December 30, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer P. Pendharkar
  • Publication number: 20030219949
    Abstract: A high voltage semiconductor device includes a drain region disposed within a semiconductor substrate. The semiconductor device further includes a field oxide layer disposed outwardly from the drain region of the semiconductor substrate. The semiconductor device also includes a floating ring structure disposed inwardly from at least a portion of the field oxide layer. In one particular embodiment, a device parameter degradation associated with the semiconductor device comprises one (1) percent or less after approximately five hundred (500) seconds of accelerated lifetime operation.
    Type: Application
    Filed: May 24, 2002
    Publication date: November 27, 2003
    Inventor: Sameer P. Pendharkar
  • Patent number: 6624481
    Abstract: An ESD robust bipolar transistor (200) that includes first and second bipolar elements (210, 220), wherein a first trigger voltage of the first bipolar element (210) is proximate a second sustaining voltage of the second bipolar element (220). The first and second bipolar elements (210, 220) include first and second bases (214, 224), emitters (216, 226) and collectors (212, 222), respectively. The first and second bases (214, 224) are coupled and the first and second collectors (212, 222) are coupled. The ESD robust bipolar transistor (200) also includes an emitter resistor (250) and a base resistor (260), wherein the emitter resistor (250) couples the first and second emitters (216, 226) and the base resistor (260) couples the second emitter (226) and the first and second bases (214, 224).
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 23, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Philip L. Hower, Robert Steinhoff