Patents by Inventor Sean M. Seutter

Sean M. Seutter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090111284
    Abstract: Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes heating a substrate disposed in a processing chamber to a temperature less than about 550 degrees Celsius; flowing a nitrogen and carbon containing chemical comprising (H3C)—N?N—H into the processing chamber; flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber; and depositing a silicon and nitrogen containing film on the substrate.
    Type: Application
    Filed: January 5, 2009
    Publication date: April 30, 2009
    Inventors: Yaxin Wang, Yuji Maeda, Thomas C. Mele, Sean M. Seutter, Sanjeev Tandon, R. Suryanarayanan Iyer
  • Patent number: 7488690
    Abstract: An assembly comprises a multilayer nitride stack having nitride etch stop layers formed on top of one another, each of the nitride etch stop layers is formed using a film forming process. A method of making the multilayer nitride stack includes placing a substrate in a single wafer deposition chamber and thermally shocking the substrate momentarily prior to deposition. A first nitride etch stop layer is deposited over the substrate. A second nitride etch stop layer is deposited over the first nitride etch stop layer.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: February 10, 2009
    Assignee: Applied Materials, Inc.
    Inventors: R. Suryanarayanan Iyer, Andrew M. Lam, Yuji Maeda, Thomas Mele, Jacob W. Smith, Sean M. Seutter, Sanjeev Tandon, Randhir P. Singh Thakur, Sunderraj Thirupapuliyur
  • Patent number: 7473655
    Abstract: Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: January 6, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yaxin Wang, Yuji Maeda, Thomas C. Mele, Sean M. Seutter, Sanjeev Tandon, R. Suryanarayanan Iyer
  • Publication number: 20080197125
    Abstract: Embodiments of substrate heating methods and apparatus are provided herein. In one embodiment, a substrate heater is provided including a heater plate having a top surface and an opposing bottom surface, a recess formed in the top surface, the recess having a feature having an upper surface for supporting a substrate, wherein the depth from a bottom surface of the recess to the upper surface of the feature is at least 5 mils. One or more pads may be disposed in the recess for supporting a substrate. The heater plate may have a thickness of about 19 mm. One or more indentations may be formed in the bottom surface of the recess for altering the rate of heat transfer to a portion of a substrate disposed above the indentation during processing. The heater plate may be utilized in a process chamber for performing heat-assisted processes.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: Applied Materials, Inc.
    Inventors: ANQING CUI, Sean M. Seutter, Jacob W. Grayson, R. Suryanarayanan Iyer
  • Publication number: 20080152840
    Abstract: An apparatus for photo-assisted or photo-induced processes is disclosed, comprising a process chamber having an integrated gas and radiation distribution plate. In one embodiment, the plate has one set of apertures for distributing one or more process gases, and another set of apertures for distributing radiation to a process region in the chamber.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: MARTIN JOHN RIPLEY, Sean M. Seutter
  • Publication number: 20080145536
    Abstract: A method and apparatus for depositing silicon boron nitride films is provided. The apparatus comprises a chamber, a gas mixing block connected to the chamber, and separate boron-containing precursor, silicon-containing precursor, and nitrogen-containing precursor gas line systems that are connected to the gas mixing block. Methods of depositing a silicon boron nitride film in the apparatus are provided. In another aspect, a method of depositing a silicon boron nitride film includes reacting a boron-containing precursor, silicon-containing precursor, and nitrogen-containing precursor in a chamber, wherein a ratio of the flow rate of the nitrogen-containing precursor into the chamber to the flow rate of the boron-containing precursor is greater than or equal to about 10.
    Type: Application
    Filed: December 13, 2006
    Publication date: June 19, 2008
    Inventors: KANGZHAN ZHANG, Sean M. Seutter, Jacob Grayson, R. Suryanarayanan Iyer
  • Patent number: 7365029
    Abstract: Embodiments of the invention generally provide a method for depositing a film containing silicon (Si) and nitrogen (N). In one embodiment, the method includes heating a substrate disposed in a processing chamber to a temperature less than about 650 degrees Celsius, flowing a nitrogen-containing gas into the processing chamber, flowing a silicon-containing gas into the processing chamber, and depositing a SiN-containing layer on a substrate. The silicon-containing gas is at least one of a gas identified as NR2—Si(R?2)—Si(R?2)—NR2 (amino(di)silanes), R3—Si—N?N?N (silyl azides), R?3—Si—NR—NR2 (silyl hydrazines) or 1,3,4,5,7,8-hexamethytetrasiliazane, wherein R and R? comprise at least one functional group selected from the group of a halogen, an organic group having one or more double bonds, an organic group having one or more triple bonds, an aliphatic alkyl group, a cyclical alkyl group, an aromatic group, an organosilicon group, an alkyamino group, or a cyclic group containing N or Si.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: April 29, 2008
    Assignee: Applied Materials, Inc.
    Inventors: R. Suryanarayanan Iyer, Sean M. Seutter, Sanjeev Tandon, Errol Antonio C. Sanchez, Shulin Wang
  • Patent number: 7094680
    Abstract: A method of forming a tantalum nitride layer for integrated circuit fabrication is disclosed. In one embodiment, the method includes forming a tantalum nitride layer by chemisorbing a tantalum precursor and a nitrogen precursor on a substrate disposed in a process chamber. A nitrogen concentration of the tantalum nitride layer is reduced by exposing the substrate to a plasma annealing process. A metal-containing layer is then deposited on the tantalum nitride layer by a deposition process.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: August 22, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Michael X. Yang, Ming Xi
  • Patent number: 6951804
    Abstract: A method of forming a tantalum-nitride layer (204) for integrated circuit fabrication is disclosed. Alternating or co-reacting pulses of a tantalum containing precursor and a nitrogen containing precursor are provided to a chamber (100) to form layers (305, 307) of tantalum and nitrogen. The nitrogen precursor may be a plasma gas source. The resultant tantalum-nitride layer (204) may be used, for example, as a barrier layer. As barrier layers may be used with metal interconnect structures (206), at least one plasma anneal on the tantalum-nitride layer may be performed to reduce its resistivity and to improve film property.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: October 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Michael X. Yang, Ming Xi
  • Publication number: 20030215570
    Abstract: Embodiments of the present invention relate to methods and apparatus for depositing a silicon nitride film. More particularly, embodiments of the present invention relate to methods and apparatus for depositing a silicon nitride film by cyclical layer deposition. One method for depositing a silicon nitride film generally comprises separately introducing one or more pulses of a nitrogen precursor and one or more pulses of a silicon precursor to a region adjacent to the substrate surface. A portion of the pulses of the nitrogen precursor and a portion of the pulses of the silicon precursor are present together at the region adjacent the substrate surface. Another embodiment for depositing a silicon nitride film comprises dosing a continuous flow of a purge gas with at least one pulse of a silicon precursor and at least one pulse of a nitrogen precursor. Each pulse of the silicon precursor and the nitrogen precursor is provided for a time period between about 0.01 seconds and about 2.0 seconds.
    Type: Application
    Filed: October 2, 2002
    Publication date: November 20, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sean M. Seutter, Errol Antonio C. Sanchez, Yazin Wang
  • Publication number: 20030124262
    Abstract: A method for forming a metal interconnect on a substrate is provided. In one aspect, the method comprises depositing a refractory metal containing barrier layer having a thickness that exhibits a crystalline like structure and is sufficient to inhibit atomic migration on at least a portion of a metal layer by alternately introducing one or more pulses of a metal-containing compound and one or more pulses of a nitrogen-containing compound; depositing a seed layer on at least a portion of the barrier layer; and depositing a second metal layer on at least a portion of the seed layer.
    Type: Application
    Filed: October 25, 2002
    Publication date: July 3, 2003
    Inventors: Ling Chen, Hua Chung, Sean M. Seutter, Michael X. Yang, Ming Xi, Vincent Ku, Dien-Yeh Wu, Alan Ouye, Norman Nakashima, Barry Chin, Hong Zhang
  • Publication number: 20030116087
    Abstract: A lid assembly and a method for ALD is provided. In one aspect, the lid assembly includes a lid plate having an upper and lower surface, a manifold block disposed on the upper surface having one or more cooling channels formed therein, and one or more valves disposed on the manifold block. The lid assembly also includes a distribution plate disposed on the lower surface having a plurality of apertures and one or more openings formed there-through, and at least two isolated flow paths formed within the lid plate, manifold block, and distribution plate. A first flow path of the at least two isolated flow paths is in fluid communication with the one or more openings and a second flow path of the at least two isolated flow paths is in fluid communication with the plurality of apertures.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Anh N. Nguyen, Steve H. Chiao, Xiaoxiong Yuan, Lawrence Chung-Lai Lei, Ming Xi, Michael X. Yang, Sean M. Seutter, Toshio Itoh
  • Publication number: 20020106846
    Abstract: A method of forming a tantalum-nitride layer (204) for integrated circuit fabrication is disclosed. Alternating or co-reacting pulses of a tantalum containing precursor and a nitrogen containing precursor are provided to a chamber (100) to form layers (305, 307) of tantalum and nitrogen. The nitrogen precursor may be a plasma gas source. The resultant tantalum-nitride layer (204) may be used, for example, as a barrier layer. As barrier layers may be used with metal interconnect structures (206), at least one plasma anneal on the tantalum-nitride layer may be performed to reduce its resistivity and to improve film property.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 8, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Michael X. Yang, Ming Xi