Patents by Inventor Seiji Takahashi

Seiji Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200098798
    Abstract: The present disclosure relates to a CMOS image sensor having a pixel device on a deep trench isolation (DTI) structure, and an associated method of formation. In some embodiments, a deep trench isolation (DTI) structure is disposed at a peripheral of a pixel region, extending from a back-side of the substrate to a position within the substrate. A pixel device is disposed at the front-side of the substrate directly overlying the DTI structure. The pixel device comprises a pair of source/drain (S/D) regions disposed within the substrate and reaching on a top surface of the DTI structure. By forming the disclosed pixel device directly overlying the DTI structure to form a SOI device structure, short channel effect is reduced because of the room for pixel device and also because the insulation layer underneath the pixel device. Thus higher device performance can be realized.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 26, 2020
    Inventors: Seiji Takahashi, Jhy-Jyi Sze, Tzu-Hsiang Chen
  • Patent number: 10530250
    Abstract: Provided is a multiphase converter having a plurality of voltage conversion units, and is configured to protect the faulty phase and continue driving using another phase when an abnormality occurs in any phase. A DC-DC converter includes a plurality of voltage conversion units that are in parallel between an input-side conductive path and an output-side conductive path. A control unit subjects the plurality of voltage conversion units to a test operation in which a duty ratio of a PWM signal for each voltage conversion unit is changed. The control unit identifies an abnormal voltage conversion unit based on at least one of the states of the electric current, the voltage, and the temperature of the multiphase conversion unit during this test period, and causes the remaining voltage conversion unit other than the identified abnormal voltage conversion unit to perform voltage conversion.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 7, 2020
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Shinsuke Tsutsui, Seiji Takahashi, Takanori Itou
  • Patent number: 10510835
    Abstract: A semiconductor device comprises a source/drain diffusion area, and a first doped region. The source/drain diffusion area is defined between a first isolation structure and a second isolation structure. The source/drain diffusion area includes a source region, a drain region, and a device channel. The device channel is between the source region and the drain region. The first doped region is disposed along a first junction between the device channel and the first isolation structure in a direction from the source region to the drain region. The first doped region is separated from at least one of the source region and the drain region, and has a dopant concentration higher than that of the device channel. The semiconductor device of the present disclosure has low random telegraph signal noise and fewer defects.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kuo-Yu Chou, Seiji Takahashi, Shang-Fu Yeh, Chih-Lin Lee, Chin Yin, Calvin Yi-Ping Chao
  • Publication number: 20190376093
    Abstract: The present invention aims to provide a method for producing a trans-polyisoprenoid which can increase trans rubber production. The present invention is directed to a method for producing a trans-polyisoprenoid in vitro, which involves the use of a gene coding for a trans-prenyltransferase (tPT) family protein and further involves the use of rubber particles bound to a protein encoded by the gene, or a method for producing a trans-polyisoprenoid, which includes introducing into a plant a vector including a promoter having a promoter activity that drives laticifer-specific gene expression and a gene coding for a tPT family protein linked to the promoter to express a protein encoded by the gene specifically in laticifers.
    Type: Application
    Filed: November 21, 2017
    Publication date: December 12, 2019
    Applicants: SUMITOMO RUBBER INDUSTRIES, LTD., TOHOKU UNIVERSITY, KANAZAWA UNIVERSITY
    Inventors: Yuko SAKURAI, Haruhiko YAMAGUCHI, Yukino INOUE, Kazuhisa FUSHIHARA, Seiji TAKAHASHI, Satoshi YAMASHITA, Toru NAKAYAMA
  • Publication number: 20190371838
    Abstract: In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 5, 2019
    Inventors: Seiji Takahashi, Chen-Jong Wang, Dun-Nian Yaung, Feng-Chi Hung, Feng-Jia Shiu, Jen-Cheng Liu, Jhy-Jyi Sze, Chun-Wei Chang, Wei-Cheng Hsu, Wei Chuang Wu, Yimin Huang
  • Publication number: 20190337474
    Abstract: An in-vehicle power supply device includes a first voltage conversion unit for performing at least a step-down operation to lower a voltage applied to a first conductive path electrically connected to an in-vehicle power storage unit, and apply the lowered voltage to a second conductive path; a second voltage conversion unit for performing at least the step-down operation to lower a voltage applied to a first conductive path and apply the lowered voltage to a second conductive path, a second voltage conversion unit having a smaller power capacity than the first voltage conversion unit; a driving unit that drives the first voltage conversion unit and the second voltage conversion unit, and a capacitor that is electrically connected to the second conductive path and is charged with a current flowing through the second conductive path.
    Type: Application
    Filed: January 8, 2018
    Publication date: November 7, 2019
    Applicants: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Yutaka Kakuno, Tsuguo Nishimura, Seiji Takahashi, Takanori Itou
  • Publication number: 20190333989
    Abstract: A semiconductor device comprises a source/drain diffusion area, and a first doped region. The source/drain diffusion area is defined between a first isolation structure and a second isolation structure. The source/drain diffusion area includes a source region, a drain region, and a device channel. The device channel is between the source region and the drain region. The first doped region is disposed along a first junction between the device channel and the first isolation structure in a direction from the source region to the drain region. The first doped region is separated from at least one of the source region and the drain region, and has a dopant concentration higher than that of the device channel. The semiconductor device of the present disclosure has low random telegraph signal noise and fewer defects.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: KUO-YU CHOU, SEIJI TAKAHASHI, SHANG-FU YEH, CHIH-LIN LEE, CHIN YIN, CALVIN YI-PING CHAO
  • Publication number: 20190323039
    Abstract: Provided is a method for producing a polyisoprenoid, which can increase natural rubber production by enhancing the rubber synthesis activity of rubber particles. The present invention provides methods for producing a polyisoprenoid using a gene coding for a cis-prenyltransferase (CPT) family protein, a gene coding for a Nogo-B receptor (NgBR) family protein and a gene coding for a rubber elongation factor (REF) family protein, specifically a method for producing a polyisoprenoid in vitro using rubber particles bound to proteins coded for by these genes, and a method for producing a polyisoprenoid in vivo using a recombinant organism (plant) having these genes introduced therein.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Applicants: SUMITOMO RUBBER INDUSTRIES, LTD., TOHOKU University
    Inventors: Yukino INOUE, Haruhiko YAMAGUCHI, Kazuhisa FUSHIHARA, Seiji TAKAHASHI, Satoshi YAMASHITA, Toru NAKAYAMA
  • Publication number: 20190308573
    Abstract: Provided is a vehicle-mounted power supply device detecting connection with an external power source and charging a power storage unit by stepping up a supply voltage based on the external power source. A vehicle-mounted power supply device includes an external terminal to which a power supply path from an external power source is connectable, a detection unit detects that the power supply path is connected to the external terminal, and a power supply circuit unit allows for flow of a current from the external terminal side toward the second conduction path side at least when the power supply path is connected to the external terminal. The control unit controls a step-down operation and a step-up operation of the voltage conversion unit, and causes the voltage conversion unit to perform the step-up operation when connection between the external terminal and the power supply path is detected by the detection unit.
    Type: Application
    Filed: November 21, 2017
    Publication date: October 10, 2019
    Inventors: Takanori Itou, Seiji Takahashi
  • Patent number: 10385362
    Abstract: Provided is a method for producing a polyisoprenoid, which can increase natural rubber production by enhancing the rubber synthesis activity of rubber particles. The present invention provides methods for producing a polyisoprenoid using a gene coding for a cis-prenyltransferase (CPT) family protein, a gene coding for a Nogo-B receptor (NgBR) family protein and a gene coding for a rubber elongation factor (REF) family protein, specifically a method for producing a polyisoprenoid in vitro using rubber particles bound to proteins coded for by these genes, and a method for producing a polyisoprenoid in vivo using a recombinant organism (plant) having these genes introduced therein.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 20, 2019
    Assignees: SUMITOMO RUBBER INDUSTRIES, LTD., TOHOKU UNIVERSITY
    Inventors: Yukino Inoue, Haruhiko Yamaguchi, Kazuhisa Fushihara, Seiji Takahashi, Satoshi Yamashita, Toru Nakayama
  • Publication number: 20190244242
    Abstract: A communication apparatus includes a transmission unit that transmits data to an external apparatus by either a first transmission method for transmitting the data by active scanning or a second transmission method for transmitting the data by passive scanning, and a control unit that, in a case where a number of external apparatuses increases, switches the transmission method of the transmission unit from the first transmission method to the second transmission method, and in a case where the number of external apparatuses decreases, switches the transmission method of the transmission unit from the second transmission method to the first transmission method.
    Type: Application
    Filed: January 25, 2019
    Publication date: August 8, 2019
    Inventor: Seiji Takahashi
  • Patent number: 10355580
    Abstract: A DC-DC converter includes a protection function for handling a reverse connection state, and a protection function for handling a predetermined abnormality other than a reverse connection state, while reducing conduction loss. The DC-DC converter includes a first protection circuit unit, and a switching element on a first conductive path of a high-voltage side switches to an OFF state upon a predetermined abnormal state being detected to prevent a current from flowing into a voltage conversion unit. Furthermore, a reverse connection protection circuit unit and a switching element, on a third conductive path between the voltage conversion unit and a reference conductive path, is configured to switch to an off state if at least a low-voltage side power supply unit is in a reverse connection state, preventing a current from the reference conductive path. Thus, a current is prevented from flowing toward a power supply that is improperly connected.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 16, 2019
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Igarashi, Byeongsu Jeong, Kazuki Masuda, Seiji Takahashi, Takanori Itou
  • Patent number: 10355576
    Abstract: A CPU determines an ON-time setting value with which the generating unit generates a PWM signal having an ON time that is closest to the ON time corresponding to a product of a reference period and a target duty cycle, and sets the determined setting value in the generating unit. The CPU divides the ON time of the PWM signal based on the determined ON-time setting value, multiplies, by N, the period that corresponds to a result of the division, and specifies a period settable value with which a PWM signal having a period that is closest to a result of the multiplication is generated. The CPU determines period setting values for N periods based on a quotient and a remainder obtained by dividing the specified settable value by N, and sets the determined setting values in the generating unit for each period of the PWM signal.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 16, 2019
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Makoto Higashi, Seiji Takahashi, Takenori Abe
  • Patent number: 10348187
    Abstract: The present invention realizes a DC-DC converter that is provided with a reverse flow protection function, while reducing conduction loss. A DC-DC converter includes: a voltage conversion unit that steps down a voltage applied to a first conductive path and output the resulting voltage to a second conductive path; a reverse flow state detection unit that detects a reverse flow state of a current flowing through the second conductive path; and a reverse protection control unit that performs a protecting operation when a current flows in a reverse direction. A switching element is provided on a third conductive path that is located between a voltage conversion unit and a reference conductive path, and the reverse protection control unit operates to switch the switching element to an OFF state upon a reverse flow state being detected.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 9, 2019
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Igarashi, Byeongsu Jeong, Kazuki Masuda, Takanori Itou, Seiji Takahashi
  • Publication number: 20190020835
    Abstract: An image sensor semiconductor device includes a semiconductor substrate and a first photodiode disposed in the semiconductor substrate and configured to generate charges in response to radiation. The image sensor semiconductor device also includes a first transistor disposed adjacent to the first photodiode, and a second transistor disposed over the first photodiode, wherein the first transistor and the second transistor are configured to generate at least one electric field to move the charges generated by the first photodiode. The image sensor device further includes a floating diffusion region configured to store the moved charges.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 17, 2019
    Inventors: SEIJI TAKAHASHI, JHY-JYI SZE
  • Publication number: 20180355000
    Abstract: The present invention provides a method for producing rubber particles bound to a membrane-associated protein by cell-free protein synthesis. The present invention relates to a method for producing rubber particles bound to a membrane-associated protein, the method including the step of performing protein synthesis in the presence of both rubber particles and a cell-free protein synthesis solution containing an mRNA coding for a membrane-associated protein to bind the membrane-associated protein to the rubber particles.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 13, 2018
    Applicants: SUMITOMO RUBBER INDUSTRIES, LTD., TOHOKU UNIVERSITY
    Inventors: Haruhiko YAMAGUCHI, Yukino INOUE, Kazuhisa FUSHIHARA, Seiji TAKAHASHI, Satoshi YAMASHITA, Toru NAKAYAMA, Yuzuru TOZAWA
  • Publication number: 20180351448
    Abstract: The present invention realizes a DC-DC converter that is provided with a reverse flow protection function, while reducing conduction loss. A DC-DC converter includes: a voltage conversion unit that steps down a voltage applied to a first conductive path and output the resulting voltage to a second conductive path; a reverse flow state detection unit that detects a reverse flow state of a current flowing through the second conductive path; and a reverse protection control unit that performs a protecting operation when a current flows in a reverse direction. A switching element is provided on a third conductive path that is located between a voltage conversion unit and a reference conductive path, and the reverse protection control unit operates to switch the switching element to an OFF state upon a reverse flow state being detected.
    Type: Application
    Filed: December 8, 2016
    Publication date: December 6, 2018
    Inventors: Takashi Igarashi, Byeongsu Jeong, Kazuki Masuda, Takanori Itou, Seiji Takahashi
  • Patent number: 10148256
    Abstract: Provided are a signal generating circuit, a voltage conversion device, and a signal generating method configured to make a minimum unit of values that are respectively set in m (where m is a natural number equal to or greater than 2) generating units that periodically generate PWM signals corresponding to the setting values substantially smaller than an actual minimum unit. A CPU specifies, at every n periods of the PWM signals generated by the m generating units SG1, SG2, . . . SGm, a settable value closest to the sum of target values for n periods, determines (m×n) setting values for n periods based on a quotient and a remainder obtained by dividing the specified settable value by the product of m and n, and sets the determined values in the respective generating units SG1, SG2, . . . SGm, using phase-specific interrupt processes that are different from each other.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: December 4, 2018
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Hasegawa, Seiji Takahashi, Takenori Abe
  • Publication number: 20180309363
    Abstract: Provided is a multiphase converter having a plurality of voltage conversion units, and is configured to protect the faulty phase and continue driving using another phase when an abnormality occurs in any phase. A DC-DC converter includes a plurality of voltage conversion units that are in parallel between an input-side conductive path and an output-side conductive path. A control unit subjects the plurality of voltage conversion units to a test operation in which a duty ratio of a PWM signal for each voltage conversion unit is changed. The control unit identifies an abnormal voltage conversion unit based on at least one of the states of the electric current, the voltage, and the temperature of the multiphase conversion unit during this test period, and causes the remaining voltage conversion unit other than the identified abnormal voltage conversion unit to perform voltage conversion.
    Type: Application
    Filed: August 31, 2016
    Publication date: October 25, 2018
    Inventors: Shinsuke Tsutsui, Seiji Takahashi, Takanori Itou
  • Publication number: 20180287500
    Abstract: Provided is a multiphase DC-DC converter having a plurality of voltage conversion units, and detect an abnormality in any phase and to remain activated with a phase other than the faulty phase while the faulty phase is reliably protected. A DC-DC converter includes a plurality of voltage conversion units that are in parallel between an input-side conductive path and an output-side conductive path. Each of the voltage conversion units includes on an individual input path, a protective switch element, and a protective switch element disposed on an individual output path. The DC-DC converter further includes a protective abnormality identifying unit configured to identify a range in which a protective switch element is abnormal, and an operation control unit configured to cause, if the range in which a protective switch element is abnormal has been identified, any remaining conversion unit other than the range to perform a voltage conversion operation.
    Type: Application
    Filed: August 31, 2016
    Publication date: October 4, 2018
    Inventors: Shinsuke Tsutsui, Seiji Takahashi, Takanori Itou