Patents by Inventor Shafaat Ahmed

Shafaat Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9822458
    Abstract: Techniques for electrodepositing selenium (Se)-containing films are provided. In one aspect, a method of preparing a Se electroplating solution is provided. The method includes the following steps. The solution is formed from a mixture of selenium oxide; an acid selected from the group consisting of alkane sulfonic acid, alkene sulfonic acid, aryl sulfonic acid, heterocyclic sulfonic acid, aromatic sulfonic acid and perchloric acid; and a solvent. A pH of the solution is then adjusted to from about 2.0 to about 3.0. The pH of the solution can be adjusted to from about 2.0 to about 3.0 by adding a base (e.g., sodium hydroxide) to the solution. A Se electroplating solution, an electroplating method and a method for fabricating a photovoltaic device are also provided.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: November 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni
  • Patent number: 9748235
    Abstract: One aspect of the disclosure relates to a method of forming an integrated circuit structure. The method may include: forming a first work function metal over a set of fins having at least a first fin and a second fin; implanting the first work function metal with a first species; removing the implanted first work function metal from over the first fin such that a remaining portion of the implanted first work function metal remains over the second fin; forming a second work function metal over the set of fins including over the remaining portion of the implanted first work function metal; implanting the second work function metal with a second species; and forming a metal over the implanted second work function metal over the set of fins thereby forming the gate stack.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: August 29, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Aritra Dasgupta, Benjamin G. Moser, Mohammad Hasanuzzaman, Murshed M. Chowdhury, Shahrukh A. Khan, Shafaat Ahmed, Joyeeta Nag
  • Publication number: 20170221889
    Abstract: One aspect of the disclosure relates to a method of forming an integrated circuit structure. The method may include: forming a first work function metal over a set of fins having at least a first fin and a second fin; implanting the first work function metal with a first species; removing the implanted first work function metal from over the first fin such that a remaining portion of the implanted first work function metal remains over the second fin; forming a second work function metal over the set of fins including over the remaining portion of the implanted first work function metal; implanting the second work function metal with a second species; and forming a metal over the implanted second work function metal over the set of fins thereby forming the gate stack.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 3, 2017
    Inventors: Aritra Dasgupta, Benjamin G. Moser, Mohammad Hasanuzzaman, Murshed M. Chowdhury, Shahrukh A. Khan, Shafaat Ahmed, Joyeeta Nag
  • Patent number: 9694330
    Abstract: The internal batch mixer with three-wing non-intermeshing rotors includes a pair of non-intermeshing, counter-rotating, tangential rotors each having three wing portions. The internal batch mixer includes a housing defining a mixing chamber, where the mixing chamber includes first and second substantially circular chamber cavities in open communication with one another at a central region of the mixing chamber. The first and second non-intermeshing, counter-rotating winged rotors are respectively rotationally mounted within the first and second substantially circular chamber cavities, such that the central region of the mixing chamber defines an interacting mixing region between the first and second non-intermeshing, counter-rotating winged rotors. The first and second non-intermeshing, counter-rotating winged rotors are driven to counter-rotate with respect to one another. Each rotor has a substantially helical contour and a blade portion divided into three separate wings.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: July 4, 2017
    Assignee: KING SAUD UNIVERSITY
    Inventors: Shafaat Ahmed Salahudeen, Othman Y. Alothman, Rabeh H. Elleithy
  • Patent number: 9647151
    Abstract: The invention relates to manufacturing a I-III-VI compound in the form of a thin film for use in photovoltaics, including the steps of: a) electrodepositing a thin-film structure, consisting of I and/or III elements, onto the surface of an electrode that forms a substrate (SUB); and b) incorporating at least one VI element into the structure so as to obtain the I-III-VI compound. According to the invention, the electrodeposition step comprises checking that the uniformity of the thickness of the thin film varies by no more than 3% over the entire surface of the substrate receiving the deposition.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 9, 2017
    Assignee: NEXCIS
    Inventors: Pierre-Philippe Grand, Salvador Jaime, Philippe De Gasquet, Hariklia Deligianni, Lubomyr T. Romankiw, Raman Vaidyanathan, Qiang Huang, Shafaat Ahmed
  • Publication number: 20160380135
    Abstract: A chalcogen-resistant material including at least one of a conductive elongated nanostructure layer and a high work function material layer is deposited on a transition metal layer on a substrate. A semiconductor chalcogenide material layer is deposited over the chalcogen-resistant material. The conductive elongated nanostructures, if present, can reduce contact resistance by providing direct electrically conductive paths from the transition metal layer through the chalcogen-resistant material and to the semiconductor chalcogenide material. The high work function material layer, if present, can reduce contact resistance by blocking chalcogenization of the transition metal in the transition metal layer. Reduction of the contact resistance can enhance efficiency of a solar cell including the chalcogenide semiconductor material.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Lubomyr T. Romankiw
  • Patent number: 9431485
    Abstract: A method of forming a finFET structure having an ion implanted intermediate region next to the channel region of a finFET gate. The intermediate region is formed in a manner to reduce or eliminate migration of the dopant to undoped regions of the finFET thus forming abrupt finFET junction.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: August 30, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Shafaat Ahmed, Murshed M. Chowdhury, Aritra Dasgupta, Mohammad Hasanuzzaman, Shahrukh Akbar Khan, Joyeeta Nag
  • Patent number: 9401443
    Abstract: Photovoltaic devices and methods for preparing a p-type semiconductor generally include electroplating a layer of gallium or a gallium alloy onto a conductive layer by contacting the conductive layer with a plating bath free of complexing agents including a gallium salt, methane sulfonic acid or sodium sulfate and an organic additive comprising at least one nitrogen atom and/or at least one sulfur atom, and a solvent; adjusting a pH of the solution to be less than 2.6 or greater than 12.6. The photovoltaic device includes an impurity in the p-type semiconductor layer selected from the group consisting of arsenic, antimony, bismuth, and mixtures thereof. Various photovoltaic precursor layers for forming CIS, CGS and CIGS p-type semiconductor structures can be formed by electroplating the gallium or gallium alloys in this manner. Also disclosed are processes for forming a thermal interface of gallium or a gallium alloy.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: July 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Kathleen B. Reuter, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Publication number: 20160181367
    Abstract: A method of forming a finFET structure having an ion implanted intermediate region next to the channel region of a finFET gate. The intermediate region is formed in a manner to reduce or eliminate migration of the dopant to undoped regions of the finFET thus forming abrupt finFET junction.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Shafaat Ahmed, Murshed M. Chowdhury, Aritra Dasgupta, Mohammad Hasanuzzaman, Shahrukh Akbar Khan, Joyeeta Nag
  • Publication number: 20160155889
    Abstract: In one aspect, a method for fabricating a thin film solar cell includes the following steps. A first absorber material is deposited as a layer A on a substrate while applying pressure to the substrate/layer A. A second absorber material is deposited as a layer B on layer A while applying pressure to the substrate/layer B. A third absorber material is deposited as a layer C on layer B while applying pressure to the substrate/layer C. A fourth absorber material is deposited as a layer D on layer C while applying pressure to the substrate/layer D. The first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of claim 1 a chalcogenide absorber layer is formed on the substrate.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Patent number: 9293632
    Abstract: In one aspect, a method for fabricating a thin film solar cell includes the following steps. A first absorber material is deposited as a layer A on a substrate while applying pressure to the substrate/layer A. A second absorber material is deposited as a layer B on layer A while applying pressure to the substrate/layer B. A third absorber material is deposited as a layer C on layer B while applying pressure to the substrate/layer C. A fourth absorber material is deposited as a layer D on layer C while applying pressure to the substrate/layer D. The first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of claim 1 a chalcogenide absorber layer is formed on the substrate.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Publication number: 20160047058
    Abstract: An electroplating apparatus includes an anode configured to electrically communicate with an electrical voltage and an electrolyte solution. A cathode module includes a cathode that is configured to electrically communicate with a ground potential and the electrolyte solution. The cathode module further includes a wafer in electrical communication with the cathode. The wafer is configured to receive metal ions from the anode in response to current flowing through the anode via electrodeposition. The electroplating apparatus further includes at least one agitating device interposed between the wafer and the anode. The agitating device is configured to apply a force to gas bubbles adhering to a surface of the wafer facing the agitating device.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 18, 2016
    Inventors: Shafaat Ahmed, Michael P. Chudzik, Lubomyr T. Romankiw
  • Patent number: 9234291
    Abstract: Techniques for electrodepositing zinc (Zn)-containing films are provided. In one aspect, a method of preparing a Zn electroplating solution is provided. The method includes the following steps. The solution is formed from a mixture of at least one zinc salt, a sulfonic acid and a solvent. The sulfonic acid is quenched with a base. A pH of the solution is adjusted to be either less than about 3.5 or greater than about 8.0. The pH of the solution can be adjusted by adding additional sulfonic acid to the solution to adjust the pH of the solution to be less than about 3.5 or by adding a second base to the solution to adjust the pH of the solution to be greater than about 8.0. A Zn electroplating solution and an electroplating method are also provided.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shafaat Ahmed, Hariklia Deligianni
  • Patent number: 9041141
    Abstract: Techniques for using electrodeposition to form absorber layers in diodes (e.g., solar cells) are provided. In one aspect, a method for fabricating a diode is provided. The method includes the following steps. A substrate is provided. A backside electrode is formed on the substrate. One or more layers are electrodeposited on the backside electrode, wherein at least one of the layers comprises copper, at least one of the layers comprises zinc and at least one of the layers comprises tin. The layers are annealed in an environment containing a sulfur source to form a p-type CZTS absorber layer on the backside electrode. An n-type semiconductor layer is formed on the CZTS absorber layer. A transparent conductive layer is formed on the n-type semiconductor layer. A diode is also provided.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Lubomyr T. Romankiw, Kejia Wang
  • Publication number: 20150079723
    Abstract: In one aspect, a method for fabricating a thin film solar cell includes the following steps. A first absorber material is deposited as a layer A on a substrate while applying pressure to the substrate/layer A. A second absorber material is deposited as a layer B on layer A while applying pressure to the substrate/layer B. A third absorber material is deposited as a layer C on layer B while applying pressure to the substrate/layer C. A fourth absorber material is deposited as a layer D on layer C while applying pressure to the substrate/layer D. The first absorber material comprises copper, the second absorber material comprises indium, the third absorber material comprises gallium, and the fourth absorber material comprises one or more of sulfur and selenium, and wherein by way of performing the steps of claim 1 a chalcogenide absorber layer is formed on the substrate.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Patent number: 8940149
    Abstract: Solutions and processes for electrodepositing gallium or gallium alloys includes a plating bath free of complexing agents including a gallium salt, an indium salt, a combination thereof, and a combination of any of the preceding salts with copper, an acid, and a solvent, wherein the pH of the solution is in a range selected from the group consisting of from about zero to about 2.6 and greater than about 12.6 to about 14. An optional metalloid may be included in the solution.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni
  • Publication number: 20140346051
    Abstract: Techniques for electrodepositing selenium (Se)-containing films are provided. In one aspect, a method of preparing a Se electroplating solution is provided. The method includes the following steps. The solution is formed from a mixture of selenium oxide; an acid selected from the group consisting of alkane sulfonic acid, alkene sulfonic acid, aryl sulfonic acid, heterocyclic sulfonic acid, aromatic sulfonic acid and perchloric acid; and a solvent. A pH of the solution is then adjusted to from about 2.0 to about 3.0. The pH of the solution can be adjusted to from about 2.0 to about 3.0 by adding a base (e.g., sodium hydroxide) to the solution. A Se electroplating solution, an electroplating method and a method for fabricating a photovoltaic device are also provided.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Shafaat Ahmed, Hariklia Deligianni
  • Patent number: 8871560
    Abstract: Embodiments relate to a method for annealing a solar cell structure including forming an absorber layer on a molybdenum (Mo) layer of a solar cell base structure. The solar cell base structure includes a substrate and the Mo layer is located on the substrate. The absorber layer includes a semiconductor chalcogenide material. Annealing the solar cell base structure is performed by exposing an outer layer of the solar cell base structure to a plasma.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Sukjay Chey, Hariklia Deligianni, Lubomyr T. Romankiw
  • Patent number: 8840770
    Abstract: Techniques for electrodepositing selenium (Se)-containing films are provided. In one aspect, a method of preparing a Se electroplating solution is provided. The method includes the following steps. The solution is formed from a mixture of selenium oxide; an acid selected from the group consisting of alkane sulfonic acid, alkene sulfonic acid, aryl sulfonic acid, heterocyclic sulfonic acid, aromatic sulfonic acid and perchloric acid; and a solvent. A pH of the solution is then adjusted to from about 2.0 to about 3.0. The pH of the solution can be adjusted to from about 2.0 to about 3.0 by adding a base (e.g., sodium hydroxide) to the solution. A Se electroplating solution, an electroplating method and a method for fabricating a photovoltaic device are also provided.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni
  • Publication number: 20140262803
    Abstract: An electroplating apparatus includes an anode configured to electrically communicate with an electrical voltage and an electrolyte solution. A cathode module includes a cathode that is configured to electrically communicate with a ground potential and the electrolyte solution. The cathode module further includes a wafer in electrical communication with the cathode. The wafer is configured to receive metal ions from the anode in response to current flowing through the anode via electrodeposition. The electroplating apparatus further includes at least one agitating device interposed between the wafer and the anode. The agitating device is configured to apply a force to gas bubbles adhering to a surface of the wafer facing the agitating device.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Michael P. Chudzik, Lubomyr T. Romankiw