Patents by Inventor Shang Chen

Shang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10741386
    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: August 11, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Shang Chen, Viljami Pore, Ryoko Yamada, Antti Juhani Niskanen
  • Patent number: 10702857
    Abstract: The present invention provides a monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material, a preparing method thereof, and a method for electrocatalytic nitrogen fixation. The material has a few-layer ultra-thin and irregular flake-like microstructure with a length and a width of nanometer scale. A doping metal in the monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material is dispersed in a form of single atoms. When the catalyst is used in electrochemical reduction of N2, a Faradic efficiency in selective reduction of N2 into NH4+ is 18% or above, and stability of the catalyst is better.
    Type: Grant
    Filed: May 6, 2018
    Date of Patent: July 7, 2020
    Assignee: CENTRAL CHINA NORMAL UNIVERSITY
    Inventors: Lizhi Zhang, Fengjiao Quan, Shang Chen, Falong Jia
  • Publication number: 20200013611
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore
  • Publication number: 20190378711
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyly halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 12, 2019
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Publication number: 20190371594
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Patent number: 10480064
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: November 19, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Delphine Longrie, Antti Juhani Niskanen, Han Wang, Qi Xie, Jan Willem Maes, Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba
  • Publication number: 20190295838
    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
    Type: Application
    Filed: April 11, 2019
    Publication date: September 26, 2019
    Inventors: Shang Chen, Viljami Pore, Ryoko Yamada, Antti Juhani Niskanen
  • Patent number: 10424477
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: September 24, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore
  • Patent number: 10410857
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyl halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: September 10, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Patent number: 10395917
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: August 27, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Patent number: 10262854
    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 16, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Shang Chen, Viljami Pore, Ryoko Yamada, Antti Juhani Niskanen
  • Publication number: 20190055643
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 21, 2019
    Inventors: Delphine Longrie, Antti Juhani Niskanen, Han Wang, Qi Xie, Jan Willem Maes, Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba
  • Publication number: 20190030516
    Abstract: The present invention provides a monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material, a preparing method thereof, and a method for electrocatalytic nitrogen fixation. The material has a few-layer ultra-thin and irregular flake-like microstructure with a length and a width of nanometer scale. A doping metal in the monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material is dispersed in a form of single atoms. When the catalyst is used in electrochemical reduction of N2, a Faradic efficiency in selective reduction of N2 into NH4+ is 18% or above, and stability of the catalyst is better.
    Type: Application
    Filed: May 6, 2018
    Publication date: January 31, 2019
    Applicant: CENTRAL CHINA NORMAL UNIVERSITY
    Inventors: Lizhi ZHANG, Fengjiao QUAN, Shang CHEN, Falong JIA
  • Publication number: 20180366314
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Application
    Filed: February 22, 2018
    Publication date: December 20, 2018
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Patent number: 10041166
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: August 7, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Delphine Longrie, Antti Juhani Niskanen, Han Wang, Qi Xie, Jan Willem Maes, Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba
  • Patent number: 10014212
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: July 3, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba
  • Publication number: 20180151344
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Application
    Filed: September 13, 2017
    Publication date: May 31, 2018
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore
  • Patent number: 9947582
    Abstract: Processes are provided herein for protecting metal thin films from oxidation when exposed to an oxidizing environment, such as the ambient atmosphere. The processes may comprise a protective treatment including exposing the metal thin film to a silicon-containing precursor at a temperature of about 200° C. or less in order to selectively adsorb a silicon-containing protective layer on the metal thin film. The silicon-containing protective layer may reduce or substantially prevent the underlying metal thin film from oxidation.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 17, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Aurélie Kuroda, Shang Chen, Takahiro Onuma, Dai Ishikawa
  • Publication number: 20180080121
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 22, 2018
    Inventors: Delphine Longrie, Antti Juhani Niskanen, Han Wang, Qi Xie, Jan Willem Maes, Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba
  • Patent number: RE46970
    Abstract: A one-time programmable memory array includes a first row conductor extending in a first row direction and disposed at a first elevation, a second row conductor extending in a second row direction and disposed at a second elevation and a column conductor extending in a column direction and disposed adjacent to the first row conductor and adjacent to the second row conductor. The array also includes a dielectric layer covering at least a portion of the column conductor, a fuse link coupled between the dielectric layer on the column conductor and the second row conductor.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: July 24, 2018
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Kuan-Fu Chen, Yin-Jen Chen, Tzung-Ting Han, Ming-Shang Chen